
Abstract
Image  Pyramids,  as  created  during  a  reduction 
process of 2D image maps, are frequently used in 
porting non-local algorithms to graphics hardware. 
A  Histogram  pyramid  (short:  HistoPyramid),  a 
special  version  of   image  pyramid,  collects  the 
number of active entries in a 2D image. We show 
how a HistoPyramid can be utilized as an implicit 
indexing data structure,  allowing us to convert  a 
sparse 3D volume into  a point  cloud entirely on 
the graphics hardware. In the generalized form, the 
algorithm reduces a highly sparse matrix with N 
elements to a list of its M active entries in O(N) + 
M  (log  N)  steps,  despite  the  restricted  graphics 
hardware architecture. Our method can be used to 
deliver  new and  unusual  visual  effects,  such  as 
particle explosions of arbitrary geometry models. 
Beyond  this,  the  algorithm is  able  to  accelerate 
feature detection, pixel classification and binning, 
and enable high-speed sparse matrix compression. 

1 Introduction
As  graphics  hardware  has  become  more  pro-
grammable,  new applications like general  matrix 
calculation,  sorting  applications  or  physics  pro-
cessing have become feasible (e.g. [5], [7], [12], 

[2]). But ever since the first of these applications 
had been implemented, it had been clear that the 
stream  processing  nature  of  graphics  hardware, 
which gives it tremendous processing power, also 
requires considerable rethinking of data structures 
and  algorithms.  Many  non-local  calculations, 
which  are  virtually  trivial  on  single-thread  sys-
tems, become hard to solve on the GPU. Its inher-
ently parallel nature can only be utilized if the out-
put of several  independent parallel units is com-
bined. It is  not allowed to forward data from one 
output element to the next one. 
The thought model of data pyramids showed how 
a global sum of values can be computed:  A so-
called  reduction  operator ([1])  repeatedly  sums 
groups of four cells in a pyramidal data array, until 
only one cell prevails. We call the data array a his-
togram pyramid, or HistoPyramid. 
Now, in our task, after the 3D model has been ras-
terized  into  a  3D  volume,  a  list  of  occupancies 
must be generated. The 3D volume resides in GPU 
memory after rasterization. Due to above reasons, 
we cannot apply the trivial CPU solution to occu-
pancy testing, which would traverse the data se-
quentially  in  order  to  count  all  occupied  pixels, 
and grow a list of cell coordinates. 
Instead, we have devised a completely GPU-based 
algorithm  which  uses  the  mentioned  HistoPyra-
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Figure 1: Dicer, our demo application, decomposing a teapot into a point cloud on the GPU, by rendering 
it  repeatedly  into  slices  of  a  256x256x256  volume  (marked  in  red).  The  volume  is  filled  with 
approximately  34000  surface  points.  Left  to  right:  3D  model  of  teapot;  volume  slices  at 
z=70/130/190/201; resulting particle cloud calculated after 91 ms. 



mid. For each point list entry to be generated, it 
traverses the histogram pyramid from the top level 
downwards until the corresponding point has been 
found.  The histogram pyramid thus serves  as  an 
implicit indexing data structure.
We test the algorithm's practical use in  Dicer,  an 
application  which  converts  arbitrary  3D  models 
into particle clouds in real-time, running complete-
ly on the GPU. 

2 Related Work
Image  pyramids  have  been  used  in  Binary  Tree 
Predictive Coding, e.g. [4] and [11]. For example, 
a quad tree leaf can signal if all of its descendants 
are identical, and hence skip the transmission of its 
descendants.  Our algorithm uses similar ideas to 
skip empty regions during the top-down HistoPy-
ramid traversal, which builds up the point list.
The build process for the mentioned HistoPyramid 
is adopting the well-known parallel "reduction op-
eration". It is applied in custom mipmapping (see 
also  [1]),  and  processes  n2 elements  in  log2(n) 
passes.  Our  sum operator  builds  a  hierarchy  of 
partial  histograms.  One variant  of  our  algorithm 
uses bilinear texture interpolation to accelerate the 
summing operation, similar to [8], see section 7.2. 
Other  GPU-based  spatial  data  structures  include 
indirection tables, N3 trees and octrees, see [2]. [9] 
maps perfect spatial  hashing onto graphics hard-
ware. Those data structures are more memory-effi-
cient than our solution, but none of them can be 
generated directly by the graphics hardware. 
Bitonic  merge  sort,  as  exemplified  in  [3],  could 
also be used for point isolation in sparse images by 
giving seed points a different sorting key than in-

valid points. However, since this sorting algorithm 
is optimized for a plentiful of key values, it runs 
suboptimally ( O(n (log n)2) steps) for a 2D image 
where only a binary partitioning is required.
Finally,  [6]  introduces the  concept  of  data  com-
paction,  i.e.  filtering  of  unwanted  data  elements 
from a given data stream. It does this by succes-
sively producing a running sum, describing where 
to skip unwanted elements to obtain a packed re-
sult.  The algorithm needs log(n) iterations to pro-
duce this running sum, and keeps the number of 
output elements constant. 
[13] improves on [6] by utilizing all intermediate 
data levels in the point list reconstruction, a reduc-
tion from log2(n)·n to 2·n data elements in the in-
termediate data output. 
Our algorithm uses a similar reduction as [13], but 
in 2D space (cell coverage: 2x2), in contrast to the 
1D nature (1x2) of [6] and [12]. This maps closer 
to the GPU's 2D image storage and texture caching 
mechanisms. As a consequence, we can utilize the 
GPU's bilinear texture interpolation if it yields an 
advantage. Our approach omits the assumption of 
a certain number of processors to keep the algo-
rithm general for future GPU generations. We fur-
ther propose a vec4-vectorization variant that ac-
celerates traversal, at the expense of extra memory, 
see Section 7. 

3 Overview
 Figure 2 illustrates the workflow between the dif-
ferent computation steps. The figure omits the triv-
ial 3D volume to 2D image conversion, and exem-
plifies the point cloud generation with the help of 
a  2D image.  All  data  is  being  processed  on  the 

Figure 2: Overview over the internal workflow. (Omits voxelization).
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GPU – the CPU is only handling data if the point 
list shall be downloaded for further processing in a 
non-GPU application. 
After  3D model  rasterization,  the  input  data  has 
become a 2D image, filled with volume slices. The 
image  cells  may  be  of  arbitrary  type 
(single/RGBA, byte/float), as long as the Discrimi-
nator is able to handle cells of such type.  
The Discriminator decides if a cell's content is re-
garded as active (1) or not (0). Section  4 explains 
the details. 
The HistoPyramid Builder creates the data pyra-
mid of  partial  histograms from the discriminator 
output. Its reduction operator repeatedly processes 
four input cells into one, starting at the resolution 
level of the original input image. It finishes when 
only one output cell remains. We describe its GPU 
implementation in Section 5. 
The  PointList  Builder takes  the  HistoPyramid, 
creates a 2D array of coordinates, called a  point  
list, and fills every list entry by using a hierarchi-
cal  traversal  of  the  HistoPyramid.  Section  6 de-
scribes  details  of  the  traversal  in  diagrams,  and 
presents a log of the traversal decisions. Moreover, 
we shortly mention how the 3D point cloud can be 
trivially reconstructed from this 2D point list. Fur-
ther, it is discussed which GPU restrictions ham-
per performance, and how their removal might im-
prove future implementations. 
We have  also  devised  algorithmic variants,  in-
cluding one which uses  the  GPU's native vector 
capabilities, and a version which utilizes bilinear 
texture  interpolation.  A discussion  of  these  vari-
ants can be found in section 7.
The  basic,  or,  for  CPU  programmers,  fairly 
straightforward concepts underlying our algorithm 
can make it hard to understand the full  range of 
new  applications  that  a  GPU  implementation 
opens.  Therefore, section  8 outlines several  real-
time applications that become feasible with a GPU 
implementation of this algorithm.
Section 9 summarizes the current performance re-
sults that we obtained by running the algorithm's 
variants  on  state-of-the-art  graphics  hardware.  It 
describes the surrounding test setup, and analyzes 
their runtime behaviours. 

4 Discriminator
The  subsequent  stages  operate  on  binary data, 
each  cell  has  to  be  either  active  (1)  or  not  (0). 
Therefore, we must first preprocess our input data. 

Our Dicer demo earmarks voxels which are active, 
i.e.  which  are  occupied  by  the  3D  model,  with 
alpha=1.0. As alpha thresholding is a local and 
inexpensive operation,  it  was integrated  into  the 
first stage of the HistoPyramid Builder. This saves 
storage space and calculation time, since the dis-
crimination  results  never  have  to  be  written  to 
video  memory.  It  should  be  noted,  though,  that 
PointList Builder has to  redo these operations on 
the base level to determine if it has found the cor-
rect target cell.  Therefore, it is only advisable to 
use this variant if the discrimination operator's cal-
culation costs are negligible in comparison to writ-
ing and re-reading the binary image. 
Beyond  this  simple  discriminator,  any  operator 
which maps 2D image cells into such a binary de-
cision can be utilized here. We refer to [14] for a 
more extensive survey of applicable discrimination 
operators. 

5 HistoPyramid Builder
The HistoPyramid, short for histogram pyramid, is 
a pyramid of partial histograms with the Discrimi-
nator's binary output as its base. On this base level, 
each active cell is treated as a 1, while inactive or 
empty cells are interpreted as 0. Our reduction op-
erator  simply sums up four  underlying cells  and 
writes the result into the prepared output level im-
age until the final level consists of only one cell. 
The algorithm annotates the level of this cell (the 
top  level)  for  the  subsequent  stages,  and  termi-
nates. The output is a stack of 2D arrays with inte-

ger content (2D textures with 32bit float values in 
the GPU implementation), see Figure 3. 

Figure  3:  Basic  HistoPyramid  building  process. 
L0, L1 and L2 are the pyramid levels. The GPU 
repeatedly  sums  four  adjacent  cells,  every  time 
halving resolution, until only one cell remains. 
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6 PointList Builder
Given the HistoPyramid as input, it is now possi-
ble  to  determine  the  number  of  list  entries. 
PointList  Builder  accesses  the  top  level  of  the 
pyramid  to  retrieve this  value,  and  allocates  the 
point list, a 2D array with a sidelength equal to the 
square root of the number of entries (see Figure 4 
for  an  example  2D  point  list).  The  reason  for 
choosing a  2D layout  is  that  the  GPU currently 
only can handle 4096 entries at maximum in a 1D 
image. The GPU treats this array as 2D image.
Now, actual point list reconstruction commences. 
In our example in  Figure 4, the PointList Builder 
shader will now be called for all nine possible list 
entries in the 2D image.
The shader first determines its own index (the key 
index)  from its  2D  coordinate  in  the  point  list. 
Since it has also been given the total number of 
entries (the list count, here: 8), it immediately ter-
minates  if  the  key  index  exceeds  the  list  count 
(such an entry is only an artifact from the 2D im-
age allocation - our example marks it with an X). 
The algorithm descends if the key index lies within 
the index range of a HistoPyramid cell. Intuitively, 
the index range of a HistoPyramid cell describes 
the covered range of key indices that active cells in 
this  covered part  of  the 2D input  image can re-
ceive. The top level's single cell poses a good ex-
ample, its range covers all active cells' indices. 

A different way to see it is that all active cells in a 
given index range will be quadtree children of this 
cell. 
During traversal of the HistoPyramid, the current 
index range [start, end] is updated as follows: 
• start is initialized to zero. 
• end is  assigned the  sum of  the  cell's  content 

(looked up from the HistoPyramid) and start. 
• Before a new cell is examined on the same level, 

start becomes the former index range end.
• A descend  happens if  the  key index falls  into 

[start;end[ . On descend, we retain the start val-
ue of the pre-descend range check.
Note that the traversal order is irrelevant as no 

sorting is enforced; it only needs to be the  same 
order for all point list entries to avoid doublettes. 
That is certainly fulfilled as the PointList Builder 
shader is the same for all pixels. 
The descend repeats until the base level has been 
reached. There, the final target cell is chosen after 
the same index range criterion, if we interpret an 
active cell as a value of 1. The target cell's coordi-
nates are written into the point list output.
The final result is thus a 2D array containing coor-
dinate entries of all active cells in the image, the 
point list. PointList Builder assigns a unique active 
cell to each index, but the indexing order is some-
what unintuitive (based on a fractal traversal pat-
tern). Optionally, the algorithm  can  provide line-

Figure 4: PointList Builder's internal data traversal for an example key index. Left: graphical illustration. 
Right,  top:  naming  convention  for  lookup  directions,  as  seen  from a  parent  cell  O.  Right  bottom: 
Algorithm's log on made decisions.
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wise indexing if a line-wise CPU traversal is de-
sired.  In  that  case,   the  reduction  operator  takes 
four  horizontal  cells  instead of  a square  of  2x2. 
However,  this  would  probably  hamper  texture 
caching  performance  during  the  HistoPyramid 
construction.
For the point cloud application, the presented gen-
eral algorithm is modified: When the final 2D co-
ordinates of each active cell have been found, we 
convert  them back  into  3D voxel  space  coordi-
nates and output them instead.
The GPU thus needs 4log2 max sizex ,size y
texture accesses to generate one point in the list.

7 Algorithmic variants
We have developed a couple of algorithmic vari-
ants to the core method in order to speed up the 
pipeline. Two of them are explained here, please 
refer to [14] for more details on point list stretch-
ing. and the pros and cons of merging Discrimina-
tor with HistoPyramid Builder.  

7.1 Faster traversal with partial sums in vec4

This variant makes use of the GPU's vector capa-
bilities. As it is capable of manipulating four float 
values  in  each  target  cell,  we store   the  partial  
sums of the leaf cells in the parent cell, instead of 
only the overall sum (see  Figure 5). We call this 
the vec4-HistoPyramid.
In this pyramid, it is not necessary to do four tex-
ture lookups (in the leaf cells) to decide in which 
quadtree branch to descend. Instead, this decision 
can already be made based on the partial sums in 
the level above. The algorithm needs only needs

log2maxsizex ,size y  texture accesses, and 

can thus save up to three of them for every tra-
versed HistoPyramid level. 

7.2 Bilinear interpolation for faster sum-up

This variant uses the GPU's bilinear texture inter-
polation.  Our  interpolation-based  HistoPyramid 
Builder places a texture lookup exactly in the mid-
dle between the four input cells of the level below, 
which makes texture interpolation return the aver-
age of the four input cell values. A multiply with 
four yields the sum. This is faster than calculating 
the  sum in  the  shader,  since  graphics  hardware 
contains  special  data  paths  for  such  interpolated 
lookups. Unfortunately, current  hardware restricts 
such interpolation to 16 bit float values. As 16 bit 
floats are not enough to represent more than 32768 
points, we have devised a way to split a 20 bit in-
teger into two 16 bit floats. But such a splitting re-
quires constant rebalancing of the interpolated val-
ues in the HistoPyramid Builder, and an extra dot 
product  to  reconstruct  cell  values  in  PointList 
Builder. Also note that interpolation cannot easily 
be  combined  with  the  vec4-HistoPyramid from 
section 7.1. 

8 Applications
Besides the mentioned point cloud generation, we 
see  several  other  potential  applications  for 
HistoPyramid Builder and PointList Builder. 

8.1 Image analysis

The most promising application for this algorithm 
is  solving  computer  vision  problems  solely  on 
graphics hardware. As an example, GPUs can now 
analyze  the  image  convolution  result after  con-
ducting the actual folding, and thus augment the 
algorithms proposed in [12], see [14] for the re-
quired,  more  advanced  discrimination  operators. 
The expensive download of half-processed image 
data  can thus be avoided, and only the discovered 
feature point set needs to be transferred.

8.2 Volume analysis

We have currently only described how to analyze 
volumes after conversion into a 2D image, but the 
algorithm can directly handle 3D volumes if the 
HistoPyramid became a hierarchy of 3D volumes. 
Unfortunately,  current  render-to-texture  function-
ality can only write to one 2D slice at a time (if at 
all: NVidia drivers currently do not support that), 
which slows down performance due to framebuffer 
setup times. 

Figure  5:  dicer_vec4's  extended  RGBA storage 
and the modified reduction operator. 
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As a proof of concept, we have recently used this 
algorithm for detecting seed points in 3D flow data 
on the GPU. We are very confident that other ap-
plications, such as level-set identification, are pos-
sible.  Even  a  GPU based  marching  cubes  algo-
rithm is within reach, provided that the algorithm 
can  generate  geometry  after  the  relevant 
voxel/mesh mappings have been identified.

8.3 Sparse matrix creation

[7] has demonstrated how to process large sparse 
matrices by packing them into a special represen-
tation. Until now, it has not been possible to  cre-
ate such sparse matrix representation on graphics  
hardware. Our algorithm could be used to convert 
matrices  into  such sparse  matrix  representations, 
and thus save memory and computation time. 

8.4 Quadtree Builder

Many simulation  problems  deal  with  processing 
data of varying sample density (e.g. fluid simula-
tions, [5] or  [7]). Also, compression and encoding 
often  require  the  clustering  of  similar  regions. 
HistoPyramid  Builder  can  be  modified  to  count 
the largest-size regions of common cell values, and 
to mark at which level they are found in the hierar-
chy.  PointList  Builder  can  in  that  case  output  a 
quadtree whose leafs terminate at the level where 
only identical values remain. This way, computa-
tion and storage could adapt to sample density, in 
much the same spirit  as  sparse  matrix  computa-
tions do not waste resources on empty regions.

9 Results
In order to test the real-time behaviour of our algo-
rithm, we implemented Dicer, a small Linux appli-
cation  that  converts  3D models  to  point  clouds. 
The  3D model,  a  teapot  generated  with  glut-
Teapot(0.6), is stored in a display list to maxi-
mize geometry throughput. The software voxelizes 
the  mesh  by  rendering  it  into  256  2D slices  of 
256x256 each, spanning a volume of [-1,-1,-1] to 
[1,1,1] in world space (see also Figure 1). The out-
put is put into 16 x 16 tiles of an 8-bit RGBA tex-
ture at 4096x4096 resolution. All pixels belonging 
to  the 3D model  are marked with  alpha=1.0. 
Additionally,  we experiment  with smaller texture 
sizes  to  measure  the  performance scaling,  effec-
tively  producing  volumes  of  256x128x128 
(2048x2048) and 256x64x64 (1024x1024). 
After voxelization, the algorithm analyzes the re-
sulting 2D texture and generates the point cloud 

from the marked pixels. Typically, it finds around 
33000 points, and renders them as a particle cloud. 
The tests were conducted on a Dell Precision M70 
laptop with Nvidia Quadro FX Go 1400 and 256 
MB video memory, connected over PCI Express. It 
contained an Intel  Pentium M (2.13 Ghz) and 2 
GB of main memory. The AGP download timings 
came  from  an  Athlon  XP2400  system  with  an 
Nvidia GForce 6600,  AGP 8x. We compare four 
variants of the algorithm:
dicer_single is  the  most  classic  implementation, 
and follows the basic algorithm in Figure 4. It uses 
the  OpenGL texture  format  GL_TEXTURE_2D, 
which  provides  mipmaps  and  render-to-texture, 
but  current  restrictions  force  it  to  build  the 
HistoPyramid in a 32 bit-float RGBA texture, even 
though only one data channel is used. 
dicer_vec4 is similar, but makes better use of the 
four 32-bit components by storing partial sums in 
the RGBA vec4, effectively delaying the cell sum-
up by one  level  (see  Figure  5 and  section  7.1). 
This  accelerates  PointList  Builder,  as  the  tree 
traversal has do to less texture lookups to make its 
branching decisions.
dicer_rect utilizes GL_TEXTURE_RECTANGLE, 
a texture format without mipmaps - but render-to-
texture  allows  32-bit  single  float  textures  here, 
which  saves  considerable  amounts  of  memory. 
Since PointList Builder needs to access all levels 
in one pass,  we were forced to  create a pseudo-
mipmap layout in a single texture (see Figure 6).

dicer_bil is similar to dicer_single, but uses bilin-
ear texture interpolation to accelerate the HistoPy-
ramid  construction,  as  proposed  in  section  7.2. 
Unfortunately, the algorithm proved to be numeri-
cally unstable. It could not faithfully reproduce a 
complete list  of active cells in a test  image, and 
was thus skipped in evaluation. We will verify this 
algorithmic variant with the forthcoming bilinear 
texture  interpolation  for  32-bit  float  values  in 
Shader Model 4.0.

Figure  6:  dicer_rect's  pseudo-mipmap layout  for 
rectangular textures without mipmap capability. 
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We could not test the algorithm on ATI graphics 
hardware without intense redesign due to the ATI 
driver's OpenGL API restrictions. 
Table 1 lists the timings common to all implemen-
tations. Slicing (the voxelization of the 3D model 
into a 2D texture) dominates all timings, presum-
ably due to the repeated geometry processing. 
Instead  of  taking  the  time  consumed  by  the 
OpenGL call delays on the CPU side, we measured 
actual  GPU  timings  with  the 
GL_EXT_timer_query extension ([10]).  
For  Table 2, we implemented a classic CPU loop 
to  compare  our  GPU algorithm with  a  standard 
single-thread  implementation.  Here,  the  CPU 
downloads  the  2D  volume  texture  as  RGBA8 
(over AGP or PCI express, depending on the sys-
tem), generates an output list after line-wise traver-
sal, and uploads it to the GPU again. Aggressive 
compiler optimization accelerates the CPU based 
analysis.  No  SIMD  techniques  were  used.  CPU 
timings were taken as virtual process time by the 
getitimer() function of Linux systems.  It is 
clear that for large textures, the texture download 
greatly outweighs the actual analysis.
Table 3 shows the GPU time spent for creating the 
HistoPyramid.  Both  dicer_single  and  dicer_vec4 
suffer heavily from the restriction to RGBA, 32-bit 
float textures: The texture data is obviously being 
swapped  to  main  memory,  causing  large  perfor-
mance penalties for 4096x4096. dicer_rect can use 
single-component 32-bit float textures, and there-
fore scales as expected. Even without memory re-
strictions,  render-to-texture  is  considerably faster 
for single components than for RGBA.

Table 1: Timings common for 
CPU and GPU variants.

4096x4096 2048x2048 1024x1024
Voxelize 470 ms 470 ms 470 ms
Voxel 
count 

33989 8595 2130

Table 2: CPU: Timings for whole traversal.

4096x4096 2048x2048 1024x1024
AGP fetch 560 ms 142 ms 36 ms
PCIe fetch 172 ms 40 ms 12 ms
CPU traversal 25 ms 25 ms 24 ms

Table 3: GPU: HistoPyramid creation for variants.

4096x4096 2048x2048 1024x1024
dicer_single ~2000 ms 20 ms 6 ms
dicer_vec4 ~2000 ms 20 ms 6 ms
dicer_rect 30 ms 10 ms 2 ms

Table 4: GPU: Point list creation for variants.

4096x4096 2048x2048 1024x102
4

dicer_single 16 ms 12 ms ~6 ms
dicer_vec4 14 ms 7 ms ~6 ms
dicer_rect 9 ms 6 ms ~2 ms
Finally, Table 4 documents the timings of point list 
creation.  Here,  results  are more comparable,  and 
dicer_vec4 can outperform dicer_single due to its 
improved traversal algorithm. However, dicer_rect 
outperforms both,  and as soon as dicer_single is 
able to render to single-component textures, it will 
probably also be in the same speed ranking. There-
fore, additional tests are required to verify the gain 
of  dicer_vec4's  increased  storage  and  bandwidth 
consumption  for  volume  analysis.  The  situation 
can  be  different  for  future  binning  operations, 
where the whole volume of data needs to be rear-
ranged and no data will be thrown away. 
After  summing up the timings from  Table 3 and 
Table 4 and comparing with  Table 2, we are now 
confident that GPU-based image/volume analysis 
has become competitive with the help of HistoPy-
ramids.  The speed advantages are only small  for 
medium-sized textures, but for large textures, the 
impact for CPU texture download is so profound 
that it pays off to keep the data on the GPU. Fur-
ther, it saves both memory and CPU time to let the 
GPU process data that already resides there (e.g. 
volume slicing results).
Our  algorithm and  its  variants  are  currently  re-
stricted  by  limitations  of  the  graphics  hardware 
and its driver. We are therefore looking forward to 
single-component  render-to-texture  for 
mipmapped  textures  and  eagerly  await  Shader 
Model 4.0-capable graphics hardware, in order to 
test how 32-bit float interpolation and integer han-
dling  can  improve  performance.  This  way,  we 
hope to make dicer_rect obsolete,  as its  pseudo-
mipmap handling is rather complicated and would 
hamper wide-spread use of this algorithm on the 
whole. We would also like to test render-to-texture 
for  3D  textures,  as  3D  HistoPyramid  traversal 
would cache more efficiently, and trilinear texture 
lookups accelerate the HistoPyramid building. Fi-
nally, we are curious on how geometry shaders un-
der SM 4.0 compare to the presented algorithm.
Finally, in our video demo HeartBreaker, shown in 
Figure 7, we demonstrate how our method can de-
liver new and unusual visual effects, such as parti-
cle  explosions  of  arbitrary  geometry  models.  It 
works similar  to  Dicer,  except  that  it  downloads 
the particle cloud to the CPU to animate it there. 



10 Conclusions and Outlook
We have presented a novel,  fast  and easy-to-use 
GPU algorithm for rapidly generating point clouds 
from 3D volume data or 3D models.  Some new, 
impressive visual  effects  for  the  development  of 
computer games are now feasible. 
Other possible applications for this technology are 
numerous, ranging from GPU-based computer vi-
sion  applications,  such  as  2D image  analysis  or 
feature  detection,  over  3D  volume  processing, 
such as occupancy testing or seed point selection 
to  improved  efficiency  in  general  GPU  calcula-
tions.
Through  experiments  we  have  shown  that  our 
purely  GPU-based implementation is significantly 
faster than a hybrid GPU/CPU implementation.
Despite the current limitations, we have presented 
a versatile algorithm with a multitude of applica-
tions.  It  will  be highly interesting to  see how it 
maps into  image analysis,  data  compression  and 
general purpose computation. Recent investigation 
also found that this algorithm could contribute im-
proved performance of the  Glift  library ([2]).  In 
general,  there should now only be few computa-
tional tasks left that can not be done on GPUs. 
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Figure 7: Screenshots of our FX demo HeartBreaker. From left to right: Solid model  (5000 triangles); 
Point cloud representation (1872 points, in a 256x64x64 grid, first iteration: 90 ms, subsequently: 25 ms); 
Particle explosion effect. 
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Figure 1: Dicer, our demo application, decomposing a teapot into a point cloud on the GPU, by rendering 
it  repeatedly  into  slices  of  a  256x256x256  volume  (marked  in  red).  The  volume  is  filled  with 
approximately  34000  surface  points.  Left  to  right:  3D  model  of  teapot;  volume  slices  at 
z=70/130/190/201; resulting particle cloud calculated after 91 ms. 

Figure  7a:  Wireframe model  of  the  Heart  mesh 
before point cloud conversion. Figure 1a: Layout of the generated point list. XYZ 

coordinates have been encoded into RGB values.
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