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In this paper, we consider the problem of animation reconstruction, i.e., the
reconstruction of shape and motion of a deformable object from dynamic
3D scanner data, without using user provided template models. Unlike pre-
vious work that addressed this problem, we do not rely on locally conver-
gent optimization but present a system that can handle fast motion, tem-
porally disrupted input, and can correctly match objects that disappear for
extended time periods in acquisition holes due to occlusion. Our approach
is motivated by cartography: We first estimate a few landmark correspon-
dences, which are extended to a dense matching and then used to recon-
struct geometry and motion. We propose a number of algorithmic building
blocks: a scheme for tracking landmarks in temporally coherent and inco-
herent data, an algorithm for robust estimation of dense correspondences
under topological noise, and the integration of local matching techniques to
refine the result. We describe and evaluate the individual components and
propose a complete animation reconstruction pipeline based on these ideas.
We evaluate our method on a number of standard benchmark data sets and
show that we can obtain correct reconstructions in situations where other
techniques fail completely or require additional user guidance such as a
template model.
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1. INTRODUCTION

Recently, a number of techniques have been proposed to scan three-
dimensional moving objects in real-time [Würmlin et al. 2002;
Zhang et al. 2004; Zitnick et al. 2004; Davis et al. 2005; Weise
et al. 2007; König and Gumhold 2008; Vlasic et al. 2009; Bradley
et al. 2010]. The output of such an acquisition process is a sequence
of unstructured point clouds. The measurement process does not
provide any correspondence information and usually only shows
a limited part of the object at a time, due to occlusions. This in-
troduces a new problem, the problem of animation reconstruction:
How can we reconstruct the shape and the motion of a deformable
object given that only parts of it can be seen at any given point in
time? More precisely, we want to reconstruct the full shape out of

Fig. 1. Animation cartography recovers template model (blue) as well as
its motion over time (yellow) from dynamic point cloud data with holes and
topological noise (gray).

the partial observations and establish dense correspondences over
time that describe the motion of the object.

Some techniques have recently been proposed to solve this prob-
lem [Mitra et al. 2007; Wand et al. 2007; Pekelny and Gotsman
2008; Süßmuth et al. 2008; Wand et al. 2009]. However, these ap-
proaches employ local numerical optimization to align parts of the
object incrementally: The final shape is inferred by a deformable
alignment of the geometry in time sequence order. If some of the
alignments yield an incorrect result, neither the shape of the de-
formable object nor the correspondences are reconstructed cor-
rectly. In practice, alignment problems are frequently observed.
They are caused by fast object movement or vanishing geometry
that reappears in later frames in a different pose. Local alignment
is not able to handle these situations correctly. The problem ob-
viously becomes much easier if the user provides additional in-
formation, such as a template model [Carranza et al. 2003; Sand
et al. 2003; Anuar and Guskov 2004; Zhang et al. 2004; Park and
Hodgins 2006; de Aguiar et al. 2008; Li et al. 2009]. Neverthe-
less, numerical tracking can still fail so that manual user interven-
tion becomes necessary. Furthermore, the fixed template restricts
the expressiveness of the model, prohibits topological changes, and
makes an acquisition of general scenes tedious.

We present a template-free technique (Figure 1) that is able to as-
semble shapes from partial scans more robustly and under general
motion than previous methods. The main idea is motivated by car-
tography (from which we derive the name of the approach, anima-
tion cartography). We first track the location of a few landmark
points, which we subsequently use to compute dense correspon-
dences, assuming that the deformation of the object is approxi-
mately isometric. The output of the algorithm is a chart that covers
the complete original object. It encodes the intrinsic structure of
the reconstructed manifold and dense correspondences to the data
points. This intrinsic reconstruction does not yet provide concrete
geometry. Therefore, we combine the intrinsic manifold charting
with a state-of-the-art extrinsic reconstruction scheme [Wand et al.
2009] that computes actual geometry. By initializing this local nu-
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merical optimization scheme with charted correspondences, we ob-
tain much more reliable results.

In order to perform the charting, a number of algorithmic building
blocks are necessary, each of which is a novel contribution of this
paper: First, we propose a scheme to track salient landmark points.
The algorithm automatically detects temporal discontinuities and
resorts to a global feature matching algorithm to provide landmark
correspondences also in general settings. The second component
is the intrinsic charting algorithm that extends the sparse landmark
correspondences to dense matches and stitches together partially
overlapping charts. Finally, we design a matching pipeline that it-
eratively performs tracking and chart merging to chart animation
sequences. A key challenge in all three steps is that we have to
deal with partial data, due to occlusion artifacts. Therefore, intrin-
sic distances are not reliable. Similarly, the apparent topology of the
input data might change, for example if a person temporarily rests
his hands touching the body. We account for these problems by
employing a novel robust matching model, which can handle such
topological noise and furthermore quantify the uncertainty under
noisy input.

We describe and evaluate the separate building blocks of the algo-
rithm as well as a complete animation reconstruction pipeline that
is composed of these components. In experiments with well known
benchmark data sets, we show that the new reconstruction pipeline
can handle more general input data than previous work.

In summary, the main contributions of this paper are:

—A matching model that is robust to geometric and topological
noise and that can quantify the matching uncertainty.

—A landmark tracking algorithm that establishes sparse correspon-
dences fully automatically under both temporally coherent as
well as arbitrary, abrupt motion.

—A charting algorithm that computes dense correspondences from
sparse landmark tracks, thereby assembling multiple partial
charts into one common reconstruction.

—Finally, a complete animation reconstruction pipeline that is sig-
nificantly more robust than previous techniques. In particular, it
can, for the first time, handle abrupt motion and occluded objects
that reappear in very different pose without user input.

2. RELATED WORK

In this section, we review previous work related to our approach, in
particular techniques for animation reconstruction and global de-
formable matching.

Animation Reconstruction is the process of recovering the mo-
tion of a deformable object from time-varying three-dimensional
scanner data, typically point clouds. There are a number of previ-
ous methods that require the user to provide a template model that
is subsequently deformed in order to match the acquired data [Car-
ranza et al. 2003; Sand et al. 2003; Anuar and Guskov 2004; Zhang
et al. 2004; Park and Hodgins 2006; de Aguiar et al. 2008; Li et al.
2009; Bradley et al. 2010].

More recently, a number of template-free techniques have been
examined. Mitra et al. [2007] perform rigid alignment between
frames, assuming rather slow motion with little local deformation.
The technique is elegant and very fast but cannot handle general

sequences with missing data and substantial inter-frame deforma-
tion. Wand et al. [2007] use deformable matching and a statistically
motivated global optimization scheme. The considerable computa-
tion costs have been addressed more recently in [Wand et al. 2009]
by employing a subspace deformation technique. The technique is
able to compute complete template models from partial input data
but, as a local optimization technique, it is sensitive to the issues
mentioned in the introduction such as large time steps, temporar-
ily disappearing objects, and fragmented frames. We later demon-
strate that the technique developed in this paper is significantly
more robust in comparison to their previous approach. Very re-
cently, [Popa et al. 2010] propose an improved template-free recon-
struction method based on optical flow and cross-parametrization.
However, their technique cannot handle fast motion and requires
video input for 2D feature tracking (such as a passive stereo acqui-
sition systems).

Li et al. [2009] use a more efficient subspace deformation technique
in combination with detail transfer, which was previously exam-
ined by Bickel et al. [2007] for the case of wrinkles, to obtain very
good results, however, requiring a template model as input. A com-
bination of deformable matching with Mitra et al.’s algorithm is
examined in Süßmuth et al. [2008]. Their work however relies on
having a complete shape in the first frame, again not improving on
the issue of assembling the template model from partial data.

Comparable approaches have also been examined with different
regularizing assumptions: Pekelny and Gotsman [2008] use an ar-
ticulated piecewise rigid model, segmented by the user, Sharf et
al. [2008] examine volume and momentum preservation as an al-
ternative. Both are still local optimization techniques, subject to the
according limitations.

Global Deformable Matching considers the problem of aligning
exactly two deformable shapes. The technique of Li et al. [2008]
is based on local matching but increases its robustness by model-
ing correspondences explicitly as latent variables and optimizing
over them. Chang and Zwicker [2008; 2009] provide global and
robustified local matching strategies for articulated, piecewise rigid
models. Bradley et al. [2008] propose a technique specifically de-
signed for garment capture that uses specific properties of such data
sets to control the boundary conditions of a cross parameterization
algorithm, thus establishing correct correspondences. Anguelov et
al. [2004] introduce intrinsic distances as validation criterion for
matching feature points on deformable manifolds. The resulting
quadratic assignment problem is solved using Bayesian belief prop-
agation. A similar approach based on dense feature points is pro-
posed by Starck and Hilton [2007]. Leordeanu et al. [2005] pro-
pose a simpler technique based on spectral relaxation for solv-
ing quadratic feature assignment problems, which has been em-
ployed for isometric matching by Huang et al. [2008] and Ahmed
et al. [2008]. The two papers introduce landmark coordinates for
deriving dense matches from the coarse matches returned by spec-
tral matching, a concept that has previously been invented in the
context of routing in sensor networks [Fang et al. 2005].

A problem with all these intrinsic matching strategies is topologi-
cal noise: Acquisition holes as well as apparent topology changes,
such as a closing mouth in a face scan, might strongly distort intrin-
sic distances such that correspondences cannot be detected reliably.
Bronstein et al. [2009] address this problem by mixing geodesic
and Euclidean distances, but this solves the problem only in some
cases. In general, both extrinsic and intrinsic distances might be
very different. In addition, the technique is based on local numer-
ical optimization, which requires pre-alignment of the data. More
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recently, Bronstein et al. [2010] propose diffusion distances, which
are more robust to a certain amount of topological noise, as this dis-
tance measure is sensitive to the cross section of interconnections
rather than just the reachability in the case of geodesic distances.
However, large scale artifacts such as big acquisition holes or false
connections in a large area also change diffusion distances signif-
icantly. Unfortunately, these problems are common in our applica-
tion area (large acquisition holes, arms at the body, closing mouth
in a face scan, etc).

Tevs et al. [2009] address this problem in a different way by al-
lowing for outlier geodesic distances within a RANSAC algorithm.
This approach requires a minimum set of “witness geodesics” but
otherwise does not depend on the geometric extent of topological
noise. We put their technique on a sound statistical basis that al-
lows for explicitly calculating matching uncertainties. More impor-
tantly, [Tevs et al. 2009] are limited to pairwise matching while we
address the more general problem of simultaneously reconstructing
3D topology and correspondences over long sequences. The recon-
struction of many-frame correspondences is a non-trivial general-
ization: Just repeatedly performing pairwise matches exponentially
increases the failure probability of randomized matching, thus ren-
dering merging of long sequences practically impossible. We avoid
this pitfall by on the one hand using continuous tracking algorithm
to detect and use local temporal coherence and on the other hand
by explicitly assessing the matching quality, avoiding the incorpo-
ration of ambiguous information in the result.

Global Animation Reconstruction refers to methods that aim at
incorporating more information than pairwise matching can pro-
vide into the reconstruction process. The previously cited global
registration methods only consider, with the exception of Ahmed et
al. [2008] and Varanasi et al. [2008], the pairwise matching case.
Their methods are based on matching feature distances computed
by Laplacian diffusion which is not robust against general topo-
logical noise. In addition, both methods require color information
associated with the point cloud data for matching SIFT/SURF fea-
tures and thus cannot be applied to purely geometric data sets. The
same holds for the technique of Liao et al. [2009], which also does
not address the problem of handling temporal gaps or jumps in mo-
tion where continuous tracking breaks down. The method of [Popa
et al. 2010] also requires image information. It performs intrinsic
cross-parametrization, similar to our approach, but has to assume
a “gradual change” prior (rather than robust matching densities) to
resolve ambiguities, therefore not yet providing a full global anima-
tion reconstruction. A very interesting, recent approach by Zheng
et al. [2010] aims at reconstructing the temporal correspondences
of a skeleton rather than complete geometry, which can then subse-
quently be used as guidance information for shape alignment. The
drawback in comparison to our approach is that although skele-
tonization improves robustness, it does not represent the full corre-
spondence information, which cannot always be recovered reliably.

3. OVERVIEW

We start with an introduction of concepts that are used throughout
the rest of the paper: We first formally define the problem that we
are solving and describe the input data we are expecting (Subsec-
tion 3.1). Next, we describe the data structures that we use to rep-
resent charts, and how intrinsic and extrinsic information is repre-
sented (Subsection 3.2). Afterwards, we describe the robust match-
ing model that is used throughout the paper (Subsection 3.3). Fi-
nally, we conclude this section with an overview of the individual

reconstruction steps and how they are combined in the final recon-
struction pipeline (Subsection 3.4).

3.1 Problem Statement

Original animation: The goal of our method is to reconstruct a
manifold and its motion from partial observations. Formally, we
assume that there has been an original differentiable 2-manifold
M ⊂ R3 that underwent a time-variant motion ft : M → R3.
t ∈ [1, T ] is the time parameter. Each ft is assumed to be injective
and differentiable, and each ft(M) denotes a deformed version of
the original manifoldM.

Isometry assumption: We equip differentiable manifolds M ⊂
R3 with an intrinsic metric dM(·, ·) that measures the shortest
geodesic distance between pairs of points. We assume that the
deformation ft is approximately isometric for each fixed t. This
means that

∀t ∈ {1..T} : dM(x,y) = dft(M) (ft(x), ft(y)) + ησf , (1)

where ησf ∼ N(0, σf ) is an error that is normal distributed with
standard deviation σf and mean zero. In other words, we assume
that the original deformation, even before measurement, has not
been perfectly isometric but that there might have been errors that
are in the range of σf .

Discussion: Assuming (approximate) isometry is an established
model [Anguelov et al. 2004; Bronstein et al. 2006; Bradley et al.
2008]. It is sufficiently general to characterize the motion of the
surface of many real-world objects, such as scans of people, ani-
mals, plants, or clothing. A strongly non-isometric surface defor-
mation would be fatal to such objects. Nevertheless, intrinsic isom-
etry poses a strong constraint on the interpretation of observed data;
one can think of a rigidity assumption within the manifold (rather
than within the embedding space). Consequently, isometries have
only very few degrees of freedom once the manifold they act upon
is known [Lipman and Funkhouser 2009; Ovsjanikov et al. 2010;
Tevs et al. 2011].

Measurement: A 3D scanner only yields a partial, sampled rep-
resentation. We assume that the scanner operates at regular time
steps t ∈ {1, 2, ..., T} and for each time step, yields a finite set
of sample points Dt ⊂ R3. We denote the individual points by
d
(i)
t , i = 1, ..., nt and the collection of all input data by just D.

To simplify further processing, we assume that parts of objects that
have actually been acquired have been sampled with a sample spac-
ing of at most εs, i.e., for each point of the original surface, there is
a sample point in Euclidean distance of at most εs. Areas with lower
sampling density are discarded during preprocessing. Furthermore,
we assume that all ofM at some point has been observed with suf-
ficient sampling density (or equivalently, we only try to reconstruct
what we have observed).

Reconstruction Tasks: We consider two reconstruction tasks: A
full geometric reconstruction and the reconstruction of a chart of
the data. The full geometric reconstruction is the ultimate goal: We
want to reconstruct M and f . Because of acquisition holes, this
involves an interpolation of f in areas of missing data. Wand et
al. [2007; 2009] propose a variational model that can find plausi-
ble interpolations by employing physically motivated prior assump-
tions on shape and motion. However, their model is non-linear and
non-convex and cannot be globally optimized.
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In order to compute a suitable initialization for such methods, we
propose to perform a simpler reconstruction task first, the recon-
struction of a chart of the data. Here, we only reconstruct the shape
M (up to isometries) and correspondences betweenM and (most
of the) data points D. This means, we either encode for each data
point d(i)

t ∈ D its preimage f−1(d(i)
t ) ∈ M, or mark it as un-

known, in case the reconstruction was not able to interpret the data
point. We can then use this shape and the correspondences to the
data points as fixed boundary conditions to stabilize a locally con-
vergent reconstruction. For efficiency, our actual pipeline will not
compute explicit correspondences for each single data point but
rather use a coarse cloud of correspondence samples that covers
the data points in order to encode the correspondence information,
as detailed in the next subsection.

3.2 Data Structures

In this subsection, we explain the data structures that we employ to
represent the objects defined above.

Sampled manifolds, intrinsic view: From the point of view of
intrinsic geometry, we look at manifolds M simply as metric
spaces, i.e., a set of points with a distance measure that determines
geodesic distances of pairs of points. We represent these objects as
graphs of points: We cover a manifoldM with a finite εs-sampling
M = {m1, ...,mnM } ⊂ M. This means that for every point of the
originalM, one point in M exists at geodesic distance of at most
εs. Furthermore, we build a graph G = (M,E) to approximately
encode the metric ofM. We include an edge e ∈ E between points
mi,mj ∈ M whenever mj is among the k-nearest neighbors of
mi or vice versa (in practice, we use k = 20). Furthermore, we
annotate the edge with this intrinsic distance. The graph distance
dM (·, ·) (i.e., the shortest path in the graph) between two arbitrary
points will then serve as an approximation of the original geodesic
distance dM(·, ·).

Discussion: Obviously, the discrete approximation will distort the
distance measure. Smooth geodesics are approximated by zig-zag
paths in graphs, which introduces systematic deviations. However,
we use this representation consistently for data and all (partial) re-
constructions. The systematic errors therefore affect all geodesic
paths in the same way so that they remain directly comparable,
which is sufficient for our application. Nevertheless, the discretiza-
tion also causes additional quantization noise in distance estimates.
Accordingly, we adapt the expected error of intrinsic distances σf
to be at least in the range of εs (in practice, we use 3εs). Hence, σf
in the following describes the magnitude of both modeling as well
as representation noise.

Sampled manifolds, extrinsic view: Sometimes, we want to be
able to give an embedding of a sampled manifold M in R3. This
is trivial to encode - we just store for each graph node mi ∈ M
an additional position vector x0(mi) ∈ R3. Following [Wand et al.
2009], we call this embedding of the chart an urshape. We denote
the urshape of M by X0(M). Please note that urshapes are not
unique but any isometric deformation f(X0(M)) is again a valid
urshape.

Charts: A chart combines a (partial) reconstruction of a manifold
with correspondences to data points. This means, a chart is a sam-
pled manifold M , and for each mi ∈ M we store a list of 3D
positions of where node mi would be located in each data frame.
We denote these positions by xt(mi) ∈ R3, where t covers a non-

high

low

reliable unreliable unreliable

graph A graph B

Fig. 2. Matching probabilities (schematic drawing): For the green point
(left) the variance is low so that the match is accepted as reliable. The
matching point for the blue point would be located in the hole of chart B,
leading to a high variance that indicates an unreliable match (for large holes,
a uniform distribution remains). The red point finally, has a proper neigh-
borhood, however, the landmark coordinates do not constrain the match suf-
ficiently. Again, this leads to a high variance and the match is detected to be
not reliable.

empty subset of time steps t ∈ 1, .., T . If the embedding is un-
known at a specific time t, we mark xt(mi) as unknown.

Discussion: The definition of a chart has been chosen to account
for a later technical problem: To limit computational costs, we will
not be able to include every data point into the chart. Therefore, we
allow for using a coarse set of points to represent M and store cor-
respondences implicitly, by storing 3D positions formi ∈M . Each
mi will form (partial) tracks that move over time but, in general,
will not exactly coincide with data points but rather cover the data
points. Please also note that a chart does not necessarily have a full
geometric embedding, as the temporal coverage might be sparse
and different at every node. However, as we will see later, our final
pipeline will actually maintain a fully embedded urshape X0(M)
for every chart in order to interface with the extrinsic reconstruc-
tion.

Landmark coordinates: Some of the chart points are landmark
points. These points are special as they correspond to features of
the input data that we were able to recognize and track over time.
As any other chart point, the spatial location of landmarks might not
be known for the full time sequence t = 1..T but only for a (non-
empty) subset. Given a set of landmarks L = {l1, .., ln} ⊆ M ,
we define the landmark coordinates1 dL(m) of an arbitrary node
m ∈ M as the vector of intrinsic distances between m and the
landmark points:

d
(L)
M (m) = [dM (l1,m), .., dM (ln,m)]T (2)

Discussion: The main idea of our algorithm is that if two charts
share a number of landmarks, we can compute dense correspon-

1To be precise, there is a difference between distances and coordinates:
distances are non-linear functions of coordinates. [Fang et al. 2005] show
how this non-linearity can be removed for developable surfaces, but we are
not aware of such a solution for general 2-manifolds. However, in our ap-
plication, the non-linearity is not an issues as we only need to test for the
likelihood of equality rather than compute routing paths as in their origi-
nal paper. We therefore stick to the simple but slightly imprecise notion of
calling the vectors of distances “landmark coordinates”.
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Fig. 3. Overview of the animation cartography pipeline. Landmark tracks, Algorithm 4.1.1, are used to build initial charts (i-charts), Algorithm 4.2.1, which
are recursively combined in a pairwise chart merging loop, Algorithm 4.2.2-4.3.2. The final result is used to initialize a numerical bundle adjustment algorithm
for post-processing. Dotted blocks indicate extrinsic matching components based on previous work of [Wand et al. 2009]. A more detailed description of how
each of the part fits in the overall approach is given in Section 5.

dences for the remaining chart points by comparing landmark co-
ordinates. The main challenge is to do this in a way that is robust to
topological and geometric noise, unlike previous work [Fang et al.
2005; Ahmed et al. 2008; Huang et al. 2008]. For this, we introduce
a robust probabilistic matching model in the next subsection.

3.3 Robust Intrinsic Matching

A central problem of our approach is to determine correspondences
between points from different charts. Let MA and MB be two
charts that share a set L of landmarks for which we know the corre-
spondences. We now want to compute where a point a ∈MA could
correspond to in MB . For this, we compute a probability distribu-
tion over all points ofMB that quantifies the likelihood of a ∈MA

matching a point b ∈MB (denoted as a ∼ b):

Pr(a ∼ b|L) = 1

Z

|L|∏
j=1

(
λ ·e

−

(
d
(L)
MA

(a)[j]−d(L)
MB

(b)[j]

)2

2σ2
f +(1−λ)

)
,

(3)
d
(L)
MA

(a)[j] and d
(L)
MB

(b)[j] are the jth component of the landmark
coordinate vector of a and b, respectively, and the term 1/Z is just
the normalization constant. Equation 3 models the matching prob-
lem by considering the geodesic distance to each landmark point in-
dependently. For each connection, we assume a normal-distributed
error in case that the geodesic is correct. However, it may happen
that acquisition holes or pseudo connections (“closing mouth”) dis-
tort the geodesics such that the distance is arbitrarily wrong. In this
case, we do not have any information about the correct distance
so that we resort to a uniform distribution. The parameter λ is the
probability for geodesics being correct. We use a global constant
failure probability of 10%, i.e., λ = 0.9.

Improvement: In practice, we can make the model more robust by
limiting the product to take into account only nearby landmark
points (in a geodesic sense) for each model point. In practice, we
use the 5 nearest landmarks. Limiting the influence helps because
the likelihood of geodesic path being distorted increases with dis-
tance to the point considered.

Discussion: This model is similar to the robust RANSAC approach
by Tevs et al. [2009], where only the k-best geodesics are consid-
ered for matching. However, our new model provides some im-
portant improvements: It provides a continuous probability den-
sity that describes the likelihood of matching point a on MB . If
landmark points are chosen in a good configuration, the density is
more sharply peaked than for landmark points in a bad configura-
tion (with geodesics almost parallel, for example). The probability
density does not only encode the maximum likelihood match, but
we have the complete distribution that quantifies the uncertainty.
In particular, we examine the variance of Pr(a ∼ b|L) w.r.t. to

xt(b) in order to determine how certain a match is. If the variance
is high, the match is not reliable. Please note that the variance au-
tomatically increases if the outlier probability 1 − λ increases. In
this case, more correct landmark matches are required to reduce
the variance again (the the uniform density “floor” of the distribu-
tion converges to zero with (1− λ)|L|). Furthermore, if the error in
the normal distribution is large, combining multiple landmark cor-
respondences reduces the variance because multiplying the Gaus-
sians will lead to a more peaked distribution. Another important
improvement over the previous model is that we do not need to fix
a constant k of reliable geodesics but we can use the more natu-
ral formulation that geodesics have a certain failure probability; the
resulting uncertainty is automatically taken into account, including
the case that even some of the k best matching geodesics could be
wrong.

3.4 Pipeline Overview

The full animation reconstruction pipeline consists of a number
of components. We will discuss each individual component sepa-
rately in the next Section (Section 4) and the composition of the full
pipeline afterwards, in Section 5. Here, we give a brief overview for
orientation (see also Figure 3).

The reconstruction starts by landmark tracking. In this step, the in-
put data is examined for feature regions and a KLT-like tracking
scheme [Lucas and Kanade 1981], adapted to 3D geometry, is used
to find landmark tracks. Out of these tracks, initial charts are built,
which we refer to in short as i-charts. Our algorithm usually ex-
tracts a number of such i-charts that end when tracks discontinue
due to abrupt motion or occlusion. Therefore, the next step matches
disconnected i-charts to general partial charts of the animation,
which we refer to in short as p-charts. The matching step involves
an additional topology check to remove incorrect edges from the
sampled manifolds and an extrinsic refinement step to improve the
matching precision, followed by a graph stitching step that connects
the two manifold representations (charts). This scheme is iterated
in an outer loop until a full chart of the complete animation is ob-
tained. Finally, we input the full chart as boundary conditions in a
standard numerical optimization to obtain the final results; we use
the method of [Wand et al. 2009].

4. ALGORITHMIC BUILDING BLOCKS

This section discusses the individual algorithmic primitives that are
used in our reconstruction pipeline. We opt for an isolated discus-
sion for two reasons: First, it makes it easier to structure the rather
complex reconstruction system. Second, several of the individual
components might be useful as algorithmic primitives in other ge-
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ometry processing contexts so that it is valuable to look at them
separately.

We structure the building blocks in three parts: Landmark track-
ing related algorithms (Subsection 4.1), intrinsic charting algo-
rithms (Subsection 4.2) and extrinsic matching techniques (Sub-
section 4.3).

4.1 Landmarks

We start by discussing the concept of landmarks and their track-
ing. Landmarks are the key concept for solving the reconstruction
problem because they allow us to characterize dense correspon-
dences between surfaces by fixing only a small number of landmark
correspondences. This reduces the combinatorial complexity of the
matching problem to a level that makes the reconstruction feasible.

Algorithm 4.1.1: Continuous Landmark Tracking

Input: Temporal sequence of data points D
Output: Set of landmark tracks L. Each of these tracks is

a smoothly moving feature.

The first component is a tracker for continuous landmark tracks.
It gets the raw data D from the scanner as input. The task is to
(1) identify feature regions, (2) track features over time, and (3)
recognize when tracks end due to incoherent motion.

We solve the first problem (1) by running slippage analy-
sis [Gelfand and Guibas 2004]. It looks at every frame Dt of the
data and determines for each point d(i)

t whether a region of radius
r around d

(i)
t can be stably aligned to itself under a rigid motion

(in practice, we use r = 10% of the bounding box size of the ob-
ject). For flat areas, for example, the alignment is unstable because
the patch could just slip along the plane. We keep only the unslip-
pable regions and perform a coarse r-sampling to distribute feature
points uniformely. Again, we use a Poisson-disc algorithm to ob-
tain a good uniform distribution.

The main tracking step (2) is performed by simple rigid ICP (Fig-
ure 4): We extract the r-neighborhood of each feature point and
align it to the next frame using point-to-plane ICP, always initial-
ized to the (known) position of the previous frame. If the algorithm
converges, we align the same geometry again to the next frame, and
iterate until the alignment diverges. The landmark track is given by
the trajectory of the center of the aligned region (the feature point)
over time. Divergence is determined (3) by not converging to a fixed
point within 32 iterations or by a translational motion by more than
r within one frame (which is likely to be wrong, because there was
no initial overlap of the geometry with the new target).

We start new tracks automatically: For each new frame, we recom-
pute the non-slippable regions and insert a new point whenever it is
not r-covered with feature points that are being tracked.

Discussion: This scheme could be considered a geometric vari-
ant of the well-known KLT feature tracker for images [Lucas and
Kanade 1981]. It works quite effectively in our situation because
scanned data usually contains a lot of coherent motion (but not
everywhere) with small motion between frames. Locally, within a
small spatial and temporal environment, the motion is usually al-
most rigid. Our scheme does not lead to perfect results but might
create both false negatives and positives, which have to be handled
by the robust matching model.

Fig. 4. We align small patches of points to successive frames via ICP to
generate tracks. A track is stopped when ICP fails to compute a stable result.

Algorithm 4.1.2: Connecting Broken Tracks

Input: Two points clouds A,B ⊂ R3, feature points FA ∈ A.
Optionally: seed correspondences L between A and B.

Output: Correspondences between all a ∈ FA and points in B
(set to “unknown” if unreliable)

Usually, the tracking algorithm is not able to cover the whole ani-
mation sequence but rapid motion or occlusion disrupt some or all
of the tracks. Therefore, we need an algorithm to reconnect broken
tracks.

We consider two point clouds A,B ⊂ R3. They might already
have a small number of landmark tracks L in common, but the
set L can be empty. If a few continuous tracks are present, we in-
clude these as initialization, so that the algorithm finds the correct
solution more quickly and more reliably. We now form candidate
landmark correspondences by connecting each landmark node of
A to every other node in B (here: landmarks and ordinary nodes).
From this set, we have to find a consistent subset. We employ a
forward search algorithm based on our robust matching scores, ex-
tending the RANSAC-like algorithm of [Tevs et al. 2009]: We tag
each candidate correspondence with a descriptor matching score
(using local curvature histograms as rigidly invariant descriptors of
r-neighborhoods, as in their paper) and select a starting correspon-
dence by importance sampling according to these scores. Given one
correspondence, we can select a random second starting point from
A and compute for all points in B the likelihood of this match be-
ing correct. This probability is given by multiplying the descriptor
matching score with the robust distance matching score for the in-
trinsic distances of all previously selected correspondences, Equa-
tion 3. We then draw the next correspondence using importance
sampling according to this compond density and iterate the pro-
cess until no more candidates are found that have a low variance
in the resulting probability density, indicating that no more reliable
matches can be found. We switch from probabilistic sampling to
choosing only the best fit (highest density) after 3 matches have
been fixed to improve the convergence speed. The whole forward
search/RANSAC loop is iterated multiple times (typically, 100 tri-
als), and the result with the largest number of established matches
is used as the final result.

Discussion: In principle, we could just always apply this algorithm
to find landmark tracks, omitting the continuous tracking phase
altogether. However, RANSAC-based matching might fail with a
small probability. Therefore, several independent matching opera-
tions have success probability that declines exponentially with the
number of matches. By making use of temporal coherence, we can
make our algorithm substantially more robust, or in other words,
dramatically reduce the computational costs (because the number
of RANSAC-rounds would have to be increased exponentially to
make up for this).
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4.2 Intrinsic Charting

We now assume that we know landmark correspondences and turn
our attention to the problem of establishing dense correspondences
among charts, and subsequently merging these into compound re-
constructions. We look at a number of different algorithmic steps:
Creating a single frame chart from scratch (as initialization), merg-
ing two charts given landmarks, and checking the topology of
merged charts. Afterwards, we use these more elementary algo-
rithms to formulate higher level algorithms that build i-charts and
p-charts.

Algorithm 4.2.1: Building Single-Frame Charts

Input: Point cloud Dt
Output: Single frame chart Mt

We build initial charts (i.e., just sampled manifolds) for a single
frame directly from data Dt: In order to limit the computational
costs, we resample Dt to an (Euclidean) sample spacing of εs,
using a Poisson-disc sampler. This yields the vertices of a sam-
pled manifold Mt. Afterwards, we form the graph Gt by building
a k-nearest neighbor graph on Mt, with respect to Euclidean dis-
tances. We then also use the Euclidean distance of the points as
edge length. For a smooth manifold, this is a first-order approxi-
mation of the true (but unknown) distances, which is sufficiently
accurate for the sampling resolution we employ. Afterwards, we
remove all vertices and edges in connected components with fewer
than 100 points in order to delete small outliers patches and under-
sampled data.

Algorithm 4.2.2: Merging Two Charts Given Landmarks

Input: Charts MA,MB

Output: A single chart of MA ∪MB

Let us assume that we have two charts MA and MB and a set
of landmarks L that the two charts have in common. Our goal is
now to compute dense correspondences and then stitch together the
charts accordingly to form a single sampled manifold.

Probabilistic Correspondences: We go through all points of a ∈
MA and compute a probability distribution Pr(a ∼ b|L) for all
points b ∈ MB according to Equation 3. If the landmarks are
placed well to constrain the matching point and if redundant land-
mark coordinates are all consistent, a single narrow peak indicates
the expected position. If only a small number of inconsistent dis-
tances are present, this scheme still leads to one pronounced max-
imum. In case of insufficient or completely inconsistent informa-
tion, we obtain a spread-out distribution with high variance, which
can be detected (see Figure 2).

Reliability: We use the variance of the distribution of the matching
score as a reliability measure for the correctness of a match. We as-
sume that MB has an extrinsic embedding X0(MB) and annotate
each point xb ∈ X0(MB) with the probability Pr(a ∼ b|L). Then,
we compute the mean and covariance of this distribution in 3D by a
PCA analysis. As uncertainty criterion, we look at the largest eigen-
value of the PCA2 (largest standard deviation). In our implementa-

2The check could also be implemented purely intrinsically by looking at
the variance of geodesic distances; however, in our pipeline, an extrinsic
urshape will always be available.

graph A

graph B

topologically incorrect
connection

Fig. 5. Graph merging: The blue and the red graph are merged. Points
within the c · εs search range (light green) are potential neighbors of the
center point. We exclude points that are not reachable by walking on the
joint red and blue graph without leaving the search range. Nearest neighbor
correspondences (green) can be used as “bridges” to walk from blue to red
and back.

tion, we consider matches unreliable if this value is larger than 3εs.
Unreliable correspondences will be excluded from the output.

Improvements: We can further reduce the risk of wrong correspon-
dences if we perform a bijective consistency check. Intuitively,
we aim at establishing correspondences that are valid either way,
whether matching from A to B or vice versa. In our probabilistic
framework, this is realized by constructing a probability in graphA
that the matched point in B matches back to the region around the
original point inAwith a high probability. Computationally, we im-
portance sample the matching distribution in B to determine a set
of potentially matching points. We then determine their matching
probability onA. Assuming statistical independence of the individ-
ual potential matches, we multiply their distributions inA to obtain
a probability density that the match is bijective. If the original point
in A has a high probability of being matched back, we accept the
match, otherwise it is discarded.

Point-to-point correspondences: Finally, we need to convert the
matching densities to actual point-to-point correspondences. We
have two choices for this step: The simplest is the nearest-neighbor
approach. We just connect a ∈MA to the point b ∈MB that max-
imizes Pr(a ∼ b|L). This is simple and robust but comes with an
error of O(εs). The second option is an extrinsic approach3: We
assume that MA and MB both have an extrinsic urshape X0(MA)
and X0(MB). We then use the nearest neighbor estimates (first
strategy) to initialize an extrinsic optimization that aligns the two
urshapes by pairwise deformable matching (see Algorithm 4.3.1).
From the urshapes, we recompute a new sampled manifold, as de-
scribed below:

Graph merging: Having two aligned urshapes, we can easily re-
compute a new sampled manifold. We just connect each point to its
extrinsic k-nearest-neighbors (in a Euclidean sense) in the overlaid
urshapes.

Technical details: We need to avoid connecting parts that acciden-
tally have a similar Euclidean position but are actually far away in
an intrinsic sense. This can happen because the extrinsic optimiza-
tion does not perform any collision detection (Subsection 4.3). We
therefore do not consider all points as candidates for the k-nearest
neighbors but only those that can be reached by a short walk along

3In our implementation, we use a combination of the nearest-neighbor and
the extrinsic approach; an implementation of the purely intrinsic formula-
tion is still subject to future work.
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resampling

chart A chart B

alignment

merging and
interpolation 

merged chart

extrinsically optimized 
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interpolated 
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Fig. 6. Resampling merged charts: We first merge two charts A,B (up-
per left) by nearest neighbor matching (lower left). The match is refined by
extrinsic, numerical alignment, which leads to partially represented corre-
spondences (lower right). When we resample the representation, we need to
perform neighborhood-based interpolation to retain this information (upper
right).

the graph of the sampled manifold: We allow only points within a
Euclidean distance c · εs (for k = 20 we use accordingly c = 3),
walking on the graph edges of MB and MA and using the nearest
neighbor correspondences between MA and MB as “bridges” to
switch between the graphs (see Figure 5 for an illustration).

Discussion: In summary, this algorithmic building block allows us
to merge two charts into a single one if we find suitable landmark
correspondences. It might fail to recognize corresponding parts if
the landmarks are unable to reliably identify the dense matches.
However, as part of the output, the algorithm will mark these re-
gions and not provide correspondence information. Furthermore,
as described above, the algorithm needs an extrinsic urshape for
both charts in order to compute an accurate matching. Otherwise, a
nearest neighbors solution is possible but it introduces a small error
in each operation so that iterative merging would become inaccu-
rate over time.

Algorithm 4.2.3: Resampling a Chart

Input: A chart M .
Output: A resampled version M ′ which is a minimal

εs-covering of M

The next operation we need to provide is to reduce the complexity
of a chart by resampling. The motivation for this is that we will
need to perform many chart merging operations that will constantly
increase the sampling density in overlapping parts, which at some
point becomes a problem in terms of computational costs.

Resampling itself is very easy: We just use the Poisson-disc sam-
pler to remove nodes from the graph that are still covered by nearby
nodes within a distance of no more than εs/2. The remaining chal-
lenge is to maintain the correspondence information between the
chart and the actual data. At this point we need to remember that
charts encode correspondences by attaching sets of extrinsic posi-
tions of points to which they correspond. Therefore, removing chart
points deletes valuable correspondence information (see Figure 6
for an illustration of this problem).

We propose again an extrinsic scheme to counter this problem by
interpolation: We keep the original chart M and chart M ′ resam-

Fig. 7. A difficult case for chart merging: the two charts of the puppet
data set have a very different topology. In input data (top row) on the left,
the hand of the puppet is merged with the body. On the right, the puppet
is fully visible and hand and body are disconnected. The lower row shows
the chart topology before performing the topology consistency check (left),
after topology clean-up (middle) and for the second chart (right). Note how
the hand got disconnected from the body in the left chart while the topology
of the chart on the right is unaffected.

pled to a sample spacing of εs. Each m′ ∈M ′ is also a node in the
original M . We look at all neighbors Nεs ⊆ M of m′ that are lo-
cated within an (intrinsic) distance of εs. For each time step t that is
covered by the chart, we then retrieve their extrinsic embeddings. If
we find at least three such points, we compute a local tangent space
by fitting a least squares-optimal rigid alignment T of the points at
time t to the corresponding urshape points [Horn 1987]. We then
estimate the correspondence of m′ at time t as T−1(x0(m′)), i.e.,
by just transforming the urshape point back to the corresponding
tangent space.

Landmarks: A special situation occurs for landmark nodes. Since
landmarks carry global matching information that is valid across
different charts, these nodes cannot be deleted, moved or interpo-
lated to different positions in the graph. Hence we just copy the
landmark nodes into the resulting chart and their position does not
need to be interpolated over the temporal support.

Discussion: The scheme performs a first order accurate interpola-
tion which yields satisfying results for the dense sampling we are
employing in our implementation. The scheme could easily be im-
plemented intrinsically, without having an extrinsic urshape, using
the intrinsic distances as weights for the tangent space approxima-
tion but this is not necessary for our pipeline.

Algorithm 4.2.4: Detecting Apparent Topology Changes

Input: A chart M
Output: Augmented chart M ′ so that intrinsic paths are

never shorter than extrinsic paths

If we use the chart merging algorithms described above to assemble
a more comprehensive chart from simpler ones, we are still facing
a major problem: It might happen that the apparent topology of the
chart changes, for example if the mouth closes in a face scan. Charts
build from closed mouth data have an incorrect metric structure and
incorrect topology: They do not show a hole in the mouth region
and the distance between the lips is too short. We therefore need to
detect this situation and adapt the graph of the chart accordingly.
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Invariant: We have only one criterion to detect such mistakes: the
intrinsic distance between corresponding points must always be
larger or equal to the largest extrinsic distance that has ever been
observed. This criterion is used in [Wand et al. 2007] to build a
straightforward “edge-stretch” test: It just checks if extrinsic em-
beddings of points connected by a common edge violate this in-
variant, and if so, delete the edge. This works in practice but it
is not very robust; it requires a delicate trade-off of elasticity and
edge-stretch tolerance. We adopt this basic idea and also propose
an improved, more robust algorithm.

Basic version: We can implement the basic stretch test easily by
just comparing the Euclidean embedding (correspondences to data)
of neighboring nodes at all time steps. Because the extrinsic cor-
respondences are stored only sparsely, we also have to resort to
interpolation from neighbors at both endpoints (as described in Al-
gorithm 4.2.3) to make this robust.

Improved version: The improved version looks at the problem
from a more global perspective: The main idea is to look at short-
est intrinsic paths and all of their known temporal correspondences
in Euclidean space. If we find a sub-path for which the endpoints
are at a larger Euclidean distance than the geodesic distance of the
path, we know that a part of this path violates our invariant, hence
one or more edges on that path must be deleted. In order to search
for those paths, we compute the geodesic paths between all pairs
of nodes in the graph and compare the Euclidean and the intrinsic
distance for all time steps. If we find a violation (intrinsic distance
being too small), we walk inwards along the path until we find the
smallest interval that still violates the distance criterion. We also
stop shrinking the interval if correspondences are not known. This
usually does not yet give us the desired result because the intervals
in which the error occurs can be quite large. We therefore perform a
voting scheme in order to identify edges which are responsible for
the violation. Each edge gets a vote if it shows up in a path that vi-
olates the distance criterion. After that, we determine the set of all
edges that obtained a maximum number of votes and delete them
from the graph. Then we iterate this scheme until no more violating
paths are found.

Speedup: Computing all pairs of paths is obviously too slow. We
therefore restrict the search to paths of a bounded length and use
only a subsample of starting points instead of all points.

Discussion: This strategy is more robust in finding problematic
connections than the edge-stretch test. However, due to the greedy
deletion algorithm, it might still delete a larger set of edges than ab-
solutely necessary. Due to subsampling, it is also possible to miss
smaller topological problems. Nevertheless, our experience is that
the improved strategy is significantly more robust than the previous
technique. An example of the topological consistency filter on the
hand puppet data set [Li et al. 2009] is shown in Fig. 7; the simple
edge-stretch test fails here.

4.3 Extrinsic Matching

And finally we take an overview over the extrinsic matching al-
gorithms. This is only a very short summary of the previous work
of Wand et al. [2007; 2009]; we refer the reader to the original
papers for implementation details. We describe the previous work
first so that the difference of our new approach becomes clear. Fur-
thermore, we will use the numerical approach for refinement. This
approach is very common in optimization: we first use a coarse

global optimization algorithm to estimate a good initialization for a
more precise (but not globally optimal) local optimization scheme.

Algorithm 4.3.1: Pairwise Local Matching

Input: Two point clouds A,B ⊂ R3

Output: A deformed version f(A) of A that fits the shape of B

The main idea of the extrinsic matching algorithm is to compute a
deformation field f : A→ R3 that minimizes a matching energy:

Ematch(f) = Edist(f(A), B) +Eelastic(f) (4)

Ematch combines two energy functions: The first, Edist, measures
the distance of point cloud B from the deformed f(A). It sums up
the point-to-plane distance between points from f(A) and points
from B. In order to support partial matching reliably, a number
of heuristics are employed, such as checking the angle of the cor-
respondence vectors to the surface normals. The energy Eelastic
penalizes the elastic energy of the deformation field f , trying to
keep it as-rigid-as possible. In the optimum, minimal bending and
stretching is introduced while still matching the data well. The two
terms are usually weighted to control the trade-off. We use the elas-
tic subspace matching model of [Wand et al. 2009], but several
other choices are possible, see for example the seminal work of
[Allen et al. 2003; Häehnel et al. 2003].

Algorithm 4.3.2: Animation Fitting

Input: Temporal point sequence D
Candidate reconstruction f,M , partially initialized.

Output: Improved reconstruction f,M

The pairwise matching model of Equation 4 is extended in Wand
et al. [2007; 2009] to a global animation fitting approach that fits
animation sequences with multiple frames to data. For this, an aug-
mented energy function is employed:

Eanim(f) = Edist(f(M),D) +Eelastic(f) +Etemp(f) (5)

It now operates on a whole animation sequence. It computes the
distance to the data at all frames (summation over time) and it
also sums up the elastic energy in all time steps. Furthermore, it
adds a new term Etemp that takes into account the temporal be-
havior of the time-dependent motion field f . It penalizes accel-
eration such that smooth motion is preferred. This energy can be
optimized using partially initialized data, where some correspon-
dences ft(m),m ∈ M are not known. The method first fixes the
known correspondences and fills in the missing data and then per-
form a global energy minimization. This interpolates missing data
in a temporally coherent fashion and distributes the remaining error
globally. Another way to view this is as a numerical bundle adjust-
ment to improve the reconstruction accuracy.

Discussion: Once again, it is very important to stress that this op-
timization is only reliable if the model is suitably initialized. In
particular, the data term is highly non-convex so that model parts
covered by data need to be prepositioned close to matching data
points. We use the existing technique because of its ability to inter-
polate missing data and because the numerical optimization, as a
continuous method, does not suffer from precision limitations (un-
like some of our intrinsic algorithms, as discussed next). There is a
small inconsistency, though: The extrinsic methods assume elastic
deformations (minimizing bending and stretching), while the in-
trinsic methods assume isometry (minimizing stretching only). For
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Fig. 8. i-chart construction as space time diagram (x-axis: time, y-axis:
spatial location). We first build single frame charts and track landmarks
(first row). The second row shows a block of tracked landmark points. These
are used to perform robust matching of landmark coordinates to establish
correspondence between ordinary points (third row). The resulting chart is
represented as a time independent graph that encodes the intrinsic structure
(last row). Each point stores correspondences to the raw data (not shown).

the target data, this is an acceptable restriction: The stricter assump-
tion of elastic behavior is a reasonable regularizer, as validated ex-
tensively in previous work [Häehnel et al. 2003; Wand et al. 2007;
Süßmuth et al. 2008; Li et al. 2009; Wand et al. 2009]. Neverthe-
less, the charting algorithm itself could alternatively be formulated
in a purely intrinsic fashion. We will discuss this briefly in the fol-
lowing.

5. RECONSTRUCTION PIPELINE

We now use the building blocks developed in the previous section
to setup a complete animation reconstruction pipeline. We divide
the algorithm into three conceptual stages: i-chart building, p-chart
merging, and final optimization.

5.1 Building i-Charts

As a first step of our algorithm, we run the continuous landmark
tracking Algorithm 4.1.1 to determine a set of landmark tracks L.
Afterwards, we first build a separate single frame chart for every
frame of the input using Algorithm 4.2.1. From this correspondence
information, we build initial charts (i-charts). This is done by merg-
ing single frame charts using the continuous landmarks tracks L.

We first select a subset of starting frames to build the initial charts
(our current implementation uses every tenth input time step as
starting frame). For each starting frame, we build one i-chart. We
first fix the landmark set L to the landmark sets that overlap the
starting frame. We then walk both forward and backward in time
and use the chart merging to merge the data into a larger i-chart.
For this step, however, we ignore the stitching of the graphs and use

only the reference frame as chart’s urshape. This provides us with
a temporal correspondence information of the chart and a suitable
urshape (i.e. does not contain any “artificial” errors which might be
introduced with our stitching pipeline).

In each merging step, we exclude unreliable correspondences,
and also exclude newly starting tracks that were not continuously
present from the starting frame. Therefore, the amount of area cov-
ered will typically decrease with time distance to the starting frame.
When the ratio of matched nodes to the number of nodes in the base
frame falls below a threshold (we use 40% in all our results) we
stop the temporal extension of the i-charts. Finally, we equip the
newly created chart with an urshape; we just use the starting frame.
Figure 8 summarizes the process.

Discussion: We have designed this procedure to make sure that an
i-chart does not contain the same piece of geometry twice at differ-
ent positions in the chart: We never include any area in an i-chart
that could already have been represented elsewhere within the same
chart, but where we would not yet have been able to recognize this
fact. This is guaranteed by not introducing new landmarks and by
only collecting reliable correspondences. Therefore, the coverage
of i-charts is typically still fragmented. Patching these fragments
together is the task of the next step, p-chart merging.

5.2 Outer Loop: Building p-Charts

We now build p-charts by stitching together separate i-charts as
well as p-charts that have already been generated earlier during this
process. The stitching is done by using the global matching Algo-
rithm 4.1.2. It first tries to establish landmark correspondences. If
a sufficient number of matches is found, the two charts are assem-
bled by chart merging (Algorithm 4.2.2), followed by subsampling
(Algorithms 4.2.3). The topology check (Algorithm 4.2.4) is per-
formed before graph merging in order to reduce the error accumu-
lation which might be introduced by merging two urshapes with
false connections.

Merging by global matching has a certain risk because the
RANSAC matching algorithm might fail to give good results with
some small probability. We can minimize the risk by using good
matching candidates first. Each i-chart and newly generated p-chart
is kept in a pool of matching candidates. In order to decide on which
pairs to match first, we use the following score:

wscore = λ1woverlap + λ2wmatch + λ3wcommon, (6)

woverlap is the temporal overlap of the charts, i.e. the number of
overlapping frames of the two charts normalized by their maximum
length. wcommon is the normalized number of common landmarks
in both charts.wmatch is the average number of matched nodes dur-
ing all previous i-chart or p-chart merging operations, thus quanti-
fying how well the matching worked out in the history of this chart.
The weight parameters are set to λ1 = 3, λ2 = 2 and λ3 = 1,
putting most emphasize on overlap. This heuristic scoring encour-
ages the merging of charts that actually do overlap and are not likely
to be bad matches. In addition, we also monitor the outcome of a
match. Chart merging is considered a failure if only a small number
of correspondences have been established in relation to the overall
number of nodes (in practice, we use 30% as threshold). In case of
failure, the p-chart is not added to the pool and only one of the two
participating charts is kept. We keep the “better” one judging by
Equation 6 (omitting the overlap which is not defined for a single
chart).
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(a) full model (b) small holes

(c) large holes (d) non-robust match

Fig. 9. Effect of robust matching: Matching a (synthetic) hand model with
a simulated acquisition hole. The results (a)-(c) use robust matching so that
still large areas are covered with reliable correspondences (green). In the
non-robust result in the lower right (d), significantly more area outside the
hole region cannot be matched.

Fig. 10. Applying landmark tracking to the hand data set (synthetic). Up-
per row: The blue tracks are obtained by continuous tracking; they end
automatically at the abrupt turn in the middle. Bottom row: The situation
is recognized automatically and the RANSAC algorithm establishes addi-
tional landmark correspondences. The orange lines indicate the final dense
correspondences.

5.3 Final Optimization

The outer loop described above is run until only one chart is left
in the pool, which is the final reconstructed chart, and the primary
output of our method.

We use this chart to drive a final numerical bundle adjustment ac-
cording to Algorithm 4.3.2. This yields a full motion sequence
where the urshape of the final chart is deformed to plausibly fit all
of the data and move smoothly over time for frames or parts where
no data is available. We show these reconstructions as results in
Section 6 and in the accompanying video.

Fig. 11. Comparison of the algorithm of Wand et al. [2009] (left) and our
reconstruction (right) for the “Face 2 shuffled” data set. In the case of Wand
et al., large deformations between individual frames prevent a proper align-
ment of the data.

6. RESULTS

We evaluate our algorithm on a number of data sets. First, we
use the “Saskia”, “Abhijeet” and “Kicker” data sets of Vlasic et
al. [2009], which have been acquired using a photometric stereo ap-
proach. We also include the “Face” and “Puppet” data sets of Li et
al. [2009], which have been acquired with the motion-compensated
structured light acquisition method of [Weise et al. 2007]. Finally,
we also include the “woman” a dataset that we acquired ourselves
using a Swissranger SR4000 [MESA] time-of-flight depth camera.
In addition to the original data sets we create a shuffled version
of the “Face” data set by deleting subsequences of frames and re-
arranging the remaining data blocks. This data set is specifically
designed to test the performance of our landmark continuation tech-
nique, Algorithm 4.1.2. In addition, we also use a synthetic data set
of a gesticulating hand, created in Poser 7, to separately evaluate
the two main new pipeline stages, landmark tracking and robust
charting. To fully appreciate the results of our technique we recom-
mend to watch the accompanying video. A brief summary is shown
in Figure 12.

6.1 Synthetic Tests

We first examine the two most important algorithmic components
of our pipeline separately before we test the complete pipeline. Fig-
ure 9 shows a hand model in two different poses with an increasing
amount of missing data. Green area indicates that the variance of
the matching distributions indicates a reliable match. The robust
matching model is able to find reliable matches for most of the
non-hole area and does not create false-positives. If we turn off the
robustness, the coverage is substantially reduced.

Figure 10 shows a tracking result on a hand sequence that in the
middle undergoes an abrupt motion. The landmark tracks are cor-
rectly interrupted at this point and the RANSAC matching is in-
voked to build new landmark correspondences. Finally, the dense
chart merging is used to obtain globally consistent dense correspon-
dences.

6.2 Real-world Scanner Data

The different real-world data sets (see Figure 12 and the video)
present a number of challenges to our reconstruction pipeline. For
the “Saskia” data set, the legs of the person often appear to be con-
nected to the skirt, giving evidence for a different topology than the
correct interpretation of the legs being separately moving objects.
In addition, we have significant amounts of missing data in the leg
region. Another difficulty is presented by the arms moving upwards
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Table I. Statistics for processing the individual data sets.
data set Saskia Face Face shuffled Puppet Abhijeet∗ Kicker∗ Woman∗

# frames in seq. 116/116 200/200 141/106 100/100 92/112 20/20 100/100
avg. # data points / frame 20500 10300 10300 9800 20000 16000 8300
avg. # ord. points 1250 1300 1300 1250 1800 2000 3000
avg. # landmarks 82 66 66 86 81 79 34
comp. time i-charts 5h 3h 2h 3h30min 4h30min 1h18min 21min
comp. time outer loop 3h 1h20min 1h 1h40min 1h 19min 2h
comp. time post-proc. 30min 1h 1h 25min 12min 8min 4min

in the beginning of the sequence. Since the scanner is not able to
resolve the gap between the arms and the body the surface seems to
undergo elastic deformation. Even though this violates our model
our algorithm is able to process the data. Also note how the legs are
reconstructed as separate entities, see Fig. 1 (left). This is only pos-
sible using the improved version of Algorithm 4.2.4, which detects
topology changes. The basic variant proposed in earlier work fails
to recognize the individual parts.

The main challenge in the “Face” data set, which has previously
been used for template-based animation reconstruction, is pre-
sented by large amounts of missing data, due to the single camera
scanner setup. Important features of the head, such as both ears, are
never present simultaneously in any of the input frames. The nose is
often visible from one side only. Nevertheless, our algorithm suc-
cessfully assembles a complete urshape of the person, including
both ears and a closed nose surface, See Figure 1 (right) and Fig-
ure 12. In addition, the neck region appears to be disconnected for
a large part of the sequence. Our algorithm is able to correctly con-
nect the neck to the head. A small artifact remains: The data set con-
tains a few small disconnected outlier patches (collar of the shirt)
that are attached to the main figure in the reconstruction. Here, the
available data is insufficient to handle these pieces correctly.

The “Puppet” data set is an example for a strongly deformable ob-
ject. It has also previously been used for template-based reconstruc-
tion. The data set is challenging due to its strongly changing appar-
ent topology (hand connected to body), see Fig. 7. The incorrect
topology even persists for as many as 40 frames. Even with large
amounts of missing data in the folds and widely varying apparent
surface topology we recover the complete sequence. Again, a us-
ing the improved algorithm to resolve the topology is essential; the
previous algorithm leads to incorrect reconstructions.

The “Face shuffled” data set shows a test sequence for our land-
mark continuation strategy. We cut the original “Face” sequence
into 5 blocks of 10,29,29,10, and 28 data frames each. In between
these contiguous blocks of data we deleted 12,10,8, and 5 frames
of the original data frames. They are present as empty frames in
the modified data set, disrupting landmark tracking altogether. As
shown in Fig. 11 (right), our algorithm is still able to reconstruct
a complete template model and its motion over the full sequence,
even interpolating the missing frames with plausible information
(see video). For comparison, we show a result computed with the
sequential alignment algorithm of Wand et al. [2009], Fig. 11 (left),
which, as expected, is not able to perform a useful reconstruction
for this type of incoherent motion.

The “Abhijeet” data set is particularly challenging. As shown in the
video, the topology is ambgious and the geometry shows system-
atic low-frequency artifacts. Parts of the arm are displaced by more
than the diameter of the arm itself, and incorrect sheets of surface
show up, probably due to the photometric acquisition approach that

Fig. 12. Original data (left) and reconstruction with parameterization of
the “Saskia”, “Puppet”, “Face”, “Abhijeet”, “Kicker” and “Woman” data
sets for different poses.
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cannot estimate depth reliably in this highly occluded situation. The
situation is particularly bad for the first 20 frames, where the arms
are merged into the body and drag large sheets of phantom geom-
etry with them when disconnecting. When we omit these frames,
we obtain qualitatively correct results for the remaining 94 frames,
with stable correspondences. The main artifact is that the arms in
some frames twist and squeeze. However, the data supporting this
is rather week and already outside the scope covered by our match-
ing model. We therefore think that this example shows quite well
both the limitations of matching model itself as well as the robust-
ness of the computational pipeline. We compare our results to those
of previous local optimization [Wand et al. 2009]; again, the local
algorithm produces inferior results with significant artifacts in both
shape and motion (see the accompanying video for details).

The “Woman” data set represents a stress test and partial failure
case for our approach. The time-of-flight data is extremely noisy,
which is a major challange for the landmark tracking algorithm. In
addition, the apparent topology is again constantly changing, in-
cluding a full topological connection of the arms with the upper
body in the the beginning of the sequence. We obtain only sparse
tracking information so that our algorithm was not able to recon-
struct dense correspondences reliably over the body for all frames
but some data remains uncharted. Hence, the final optimization pro-
duces a smooth interpolation that in some parts does not follow the
data. The quality of the reconstructed geometry is low; the corre-
spondence noise does not permit resolving high frequency details
in the final reconstruction, but the result is qualitatively correct.
For such kind of very low-resolution data, additional cues such as a
simultaneously recorded video with color information is probably
necessary to permit better reconstructions.

In Table I, we show statistics of algorithm run times and other char-
acteristic data for the different sequences. The first row shows the
number of reconstructed frames versus the available data frames.
Note that for the “Face shuffled” data set more frames are recon-
structed than are present in the original data. The second row shows
the average number of data points per frame of the input sequence,
while row three shows the number of nodes in a typical chart. The
average number of detected landmarks per frame is shown in row
four. Note that this number varies widely over frames. Finally, the
computation times for the different steps of our algorithm are given.
The computations were run on a 2xQuadCore Intel Xeon X5550
with 2.67 GHz. Datasets marked with a “*” were computed on
2xHexaCore Intel Xeon X5650 with 2.67 GHz.

6.3 Discussion and Limitations

As shown by the example scenes, the new algorithm is able to han-
dle more general input data that could not be reconstructed auto-
matically by previous techniques. Not relying on temporal coher-
ence is an important step for practical applications. Although scan-
ners are available that scan at very high frame rates, the fact that
geometry often vanishes in acquisition holes and reappears in a
different pose is a strongly limiting factor in practice to previous
algorithms. We can also show that the algorithm is quite robust.
Even for data sets with strong noise or artifacts outside our model-
ing assumptions, we still obtain qualitatively correct results.

As most complex reconstruction systems, our method has a number
of parameters. However, we were able to fix most of these parame-
ters for all of the data sets, as described in the text. We only adapted
the sampling resolution εs to minimize the computational costs. In
addition, we have increased the number of landmarks in the robust

matching scores from 5 to 6 in the “Abhijeet” data set as this lead
to slightly better results. Finally, we have adapted the regularizer
weights for stiffness and acceleration penalty in the final numerical
optimization best visual (aesthetic) impression.

Our method still has a number of limitations that require further re-
search: A problem is the handling of “unreliable” data. Our current
pipeline dismisses this data in the construction of initial i-charts but
during p-chart merging, we currently do not delete uncharted data
because this could reintroduce large holes in the charts but rather
rely on extrinsic alignment to match these pieces. This problem
can be addresses by a good scheduling of the merging operations,
which are commutative but not associative: the order in which pairs
are merged matters. The current heuristic tries to minimize the neg-
ative impact by aiming at large overlap, but better orders (possibly
including options for backtracking from bad matches) might exist.

A second issue is the detection of topological changes. Although
we can handle more scenes than previous techniques, we still en-
counter problems in some situations. In particular, if large acquisi-
tion holes and topological changes coincide, this can lead to incor-
rect results where the local topology is not resolved correctly. An
example is the face scan from [Wand et al. 2007]. Our technique
cannot resolve the opening of the mouth because of large acqui-
sition holes opening up around the lips simultaneuously with the
opening of the mouth. The missing area is too large to be handled
by even robust intrinsic matching. In this case, a purely extrinsic
technique or a template based techniques [Li et al. 2009] has an
advantage over our approach.

Finally, the combination of elastic and isometric matching is some-
times a limiting factor: for objects with very strong deformations,
this introduces a bias towards rigidity, leading to insufficient bend-
ing. A purely intrinsic formulation of the charting could probably
reduce these problems. However, this seems to be a minor issue in
practice that can usually be resolved by reducing the strength of the
elastic regularizer appropriately.

7. CONCLUSIONS

We have presented a global optimization technique for animation
reconstruction from dynamic point cloud sequences as produced
by dynamic range scanning devices. Our method is based on the
concept of cartography and uses an intrinsic framework for a more
reliable and robust matching of partial deformable shapes in vastly
different poses. Iteratively applying this technique automatically
yields a completed template model, its motion over the course of
the acquired sequence and a consistent parameterization. Our tech-
nique uses a landmark tracking scheme that uses temporal coher-
ence if available but can fully automatically resort to an efficient
randomized global matching algorithm if required by the data. We
can thus recover from scanner shortcomings such as large scale oc-
clusion and we can handle fast motion in the scene. We also im-
prove the robustness in detecting topological changes. Overall, we
are able to process sequences under significantly more general con-
ditions than previous work.

For future work some interesting avenues are opened up by our
research. First, the problem of finding a globally consistent intrin-
sic description of a moving scene can be applied to other problem
areas, e.g. the computer vision problem of robustly detecting oc-
clusion boundaries in video sequences. Stereo or multi-view stereo
applications could be approached this way. Another interesting de-
velopment would be the formulation of resolution-enhancing tech-
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niques like interpolation and surface approximations that currently
require extrinsic embeddings in a completely intrinsic framework.
This would enable our technique to be applied in a completely
shape invariant way.
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HÄEHNEL, D., THRUN, S., AND BURGARD, W. 2003. An extension of the
icp algorithm for modeling nonrigid objects with mobile robots. In Proc.
Int. Joint Conf. on Artificial Intelligence (IJCAI). 915–920.

HORN, B. K. P. 1987. Closed-form solution of absolute orientation using
unit quaternions. J. Opt. Soc. Am. A 4, 4, 629–642.

HUANG, Q.-X., ADAMS, B., WICKE, M., AND GUIBAS, L. J. 2008. Non-
rigid registration under isometric deformations. Computer Graphics Fo-
rum (Proc. SGP) 27, 5, 1449 – 1457.
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of skin deformation. ACM Trans. Graph. 22, 3, 578–586.

SHARF, A., ALCANTARA, D. A., LEWINER, T., GREIF, C., SHEFFER, A.,
AMENTA, N., AND COHEN-OR, D. 2008. Space-time surface recon-
struction using incompressible flow. ACM Trans. Graph. 27, 5, 110.

STARCK, J. AND HILTON, A. 2007. Correspondence labelling for wide-
timeframe free-form surface matching. In Proc. of ICCV. 1–8.
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