

Maximum Mipmaps for Fast, Accurate, and Scalable Dynamic Height Field Rendering

Art Tevs*, Ivo Ihrke** and Hans-Peter Seidel*

*MPI Informatik, Saarbruecken, Germany **University of British Columbia February 17, 2008

Overview

olanck institut

informatik

Height Field Rendering

- Per-Pixel Displacement mapping
- Effect of a highly tesselated mesh
- Used in games and scientific visualizations
- Ray Height Field Intersection
 - Depth-Map intersection (refraction, reflection)
 - Collision detection

Related work

- Robert L. Cook, Shade Trees, Siggraph'84
 - one of the first mentions of displacement mapping
- Fabio Policarpo et al., I3D'05 and I3D'06
 - real-time relief mapping
 - relief mapping of non-height-field surface details
- F. Policarpo and M. Oliviera, GPU Gems 3'07
 - relaxed cone step mapping (CSM)
- Wyman et al., Szirmay-Kalos et al., Hu and Qin
 - ray depth-map intersection for refraction and reflection
- Kyoungsu Oh et al. (VRST'06)
 - pyramidal displacement mapping

Overview

Problem Statement

- Fast, accurate and scalable algorithms are desired
- Fast pre-computation time of acceleration structure
- GPU optimized

Outline

- Maximum mipmaps data structure (MMM)
- Intersection Algorithm
- Performance
- Optimization
- Discussion
- Your questions

Maximum Mipmaps

- Equivalent to fully sub-divided quad-tree [Samet 1990]
- Already used in CG publications
 - soft shadow rendering [Guennebaud 2006]
 - geometry image intersection [Carr et al. 2006]
- MMM data structure is dynamic
 - precomputation time in order of ms
- 1/3 additional memory required

Maximum Mipmaps

- Collection of bilinear patches placed on a regular grid
- Level 0 vec4 (RGBA) value storing height of the bilinear patch data points
- Level 1 to n maximum height of underlying patches
- due to optimized hardware the construction time is very fast

- Utilize the MMM data structure as quad-tree to perform *empty space skipping*
 - Adaptive ray step length
 - Hierarchical traversal, starting at the highest level
 - Bilinear patch intersection or binary search in level 0

planck institut

informatik

cell 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

- Example of a Ray Height Field Intersection
- ID height field and the corresponding MMM data structure
 - linear elements in the finest levels

planck institut

informatik

cell

- Ray hits the bounding box of the Height Field
- Exit points below the maximum value -> refine

max planck institut

informatik

Ray intersects the maximum value plane -> refine

planck institut

informatik

Ray does not hit the maximum plane -> move

max planck institut

informatik

Ray exits below the maximum value -> refine

planck institut

informatik

no maximum height plane intersection -> move

max planck institut

informatik

again here refinement is required

max planck institut

informatik

traverse down

max planck institut

informatik

move ray to the boundary

max planck institut

informatik

ray at cell boundary with index divisible by two

max planck institut

informatik

increase the mipmap level (traverse up in the tree)

max planck institut

informatik

move ray to the boundary

planck institut

informatik

ray at cell with index divisible by two -> increase the level

max planck institut

informatik

ray below the maximum height -> refine

max planck institut

informatik

 ray below the maximum height and level = 0 -> perform ray-line intersection test

max planck institut

informatik

Ray – Height Field Intersection point is found

- Hierarchy level updates:
 - no level update
 - linear stepping
 - start from root
 - not real effective because of more iteration steps
 - optimal parent
 - require extra look-up or dynamic branching computation to find the optimum
 - not very GPU friendly
 - one level up
 - optimal solution for todays GPUs

Optimized Implementation

- Level of Detail
 - easily derived from the mipmap structure
 - prune tree nodes below treshold computed by the distance of the ray to the viewer
- Cache optimized mipmap data structure
 - mipmap structure as 3D texture (consecutive levels in Z-slices)
 - Interleaved mipmap data
- Perform binary + linear search in level 0
 - very hardware friendly, however may cause artifacts

	maximum mipmap	+ bilinear patch intersection	+ linear binary search
256 ²	95 FPS	43 FPS	70 FPS
512²	87	38	58
1024²	75	33	50
2048 ²	70	27	40
4096 ²	49	22	35

Performance

Iteration step comparison of common algorithms and MMM

Comparison

- Algorithm complexity
 - Relief mapping $\approx \sqrt{n}$
 - CSM = hard to analyse but in practice $\leq \sqrt{n}$
 - MMM = in practice logarithmic time
- Precomputation time
 - Relief mapping = 0
 - CSM = minutes to hours
 - MMM = mipmap build time = < 10 ms</p>

Comparison

max planck institut informatik

2562	5124	10242	20482	40962	

	relief mapping	relaxed CSM	maximum mipmap
256 ²	150	240 (~2min)	110 (0.17ms)
512²	103	233 (~15min)	102 (0.27ms)
1024 ²	56	227 (>8h)	90 (1.2ms)
2048 ²	32	n.a.	89 (2.13ms)
4096 ²	9	n.a.	77 (7.52ms)

Contribution

- Accurate
 - ray height field intersections with no artifacts

Contribution

- Dynamic
 - negligible update time for dynamic height fields

Contribution

- Scalable
 - high resolution height fields (4096²) at real-time frame rates

Discussion

- Drawbacks
 - depends on random mipmap level access, which seems to be non optimized on current GPUs
 - for small heightmap resolution the brute force search on current GPUs might even be faster

Thank you!

http://www.tevs.eu/projects_i3d08.html