
Maximum Mipmaps for Fast, Accurate,
and Scalable Dynamic Height Field
Rendering

Art Tevs*, Ivo Ihrke** and Hans-Peter Seidel*

*MPI Informatik, Saarbruecken, Germany

**University of British Columbia

February 17, 2008

Overview

 Height Field Rendering

– Per-Pixel Displacement mapping

– Effect of a highly tesselated mesh

– Used in games and scientific visualizations

 Ray - Height Field Intersection

– Depth-Map intersection (refraction, reflection)

– Collision detection

Related work

 Robert L. Cook, Shade Trees, Siggraph'84

– one of the first mentions of displacement mapping

 Fabio Policarpo et al., I3D'05 and I3D'06

– real-time relief mapping

– relief mapping of non-height-field surface details

 F. Policarpo and M. Oliviera, GPU Gems 3’07

– relaxed cone step mapping (CSM)

 Wyman et al., Szirmay-Kalos et al., Hu and Qin

– ray depth-map intersection for refraction and reflection

 Kyoungsu Oh et al. (VRST'06)‏

– pyramidal displacement mapping

Overview

 Problem Statement

– Fast, accurate and scalable algorithms are desired

– Fast pre-computation time of acceleration structure

– GPU optimized

Outline

 Maximum mipmaps data structure (MMM)

 Intersection Algorithm

 Performance

 Optimization

 Discussion

 Your questions

Maximum Mipmaps

 Equivalent to fully sub-divided quad-tree [Samet
1990]

 Already used in CG publications

– soft shadow rendering [Guennebaud 2006]

– geometry image intersection [Carr et al. 2006]

 MMM data structure is dynamic

– precomputation time in order of ms

 1/3 additional memory required

Maximum Mipmaps

 Collection of bilinear patches placed on a regular grid

 Level 0 – vec4 (RGBA) value storing height of the

bilinear patch data points

 Level 1 to n – maximum height of underlying patches

 due to optimized hardware the construction time is

very fast

Intersection Algorithm

 Utilize the MMM data structure as
quad-tree to perform empty space skipping

– Adaptive ray step length

– Hierarchical traversal, starting at the

highest level

– Bilinear patch intersection or binary

search in level 0

Intersection Algorithm

 Example of a Ray – Height Field Intersection

 1D height field and the corresponding MMM data structure

– linear elements in the finest levels

Intersection Algorithm

 Ray hits the bounding box of the Height Field

 Exit points below the maximum value -> refine

Intersection Algorithm

 Ray intersects the maximum value plane -> refine

Intersection Algorithm

 Ray does not hit the maximum plane -> move

Intersection Algorithm

 Ray exits below the maximum value -> refine

Intersection Algorithm

 no maximum height plane intersection -> move

Intersection Algorithm

 again here refinement is required

Intersection Algorithm

 traverse down

Intersection Algorithm

 move ray to the boundary

Intersection Algorithm

 ray at cell boundary with index divisible by two

Intersection Algorithm

 increase the mipmap level (traverse up in the tree)‏

Intersection Algorithm

 move ray to the boundary

Intersection Algorithm

 ray at cell with index divisible by two -> increase the level

Intersection Algorithm

 ray below the maximum height -> refine

Intersection Algorithm

 ray below the maximum height and level = 0 -> perform
ray-line intersection test

Intersection Algorithm

 Ray – Height Field Intersection point is found

Intersection Algorithm

 Hierarchy level updates:

– no level update

 linear stepping

– start from root

 not real effective because of more iteration steps

– optimal parent

 require extra look-up or dynamic branching computation to find the optimum

 not very GPU friendly

– one level up

 optimal solution for todays GPUs

Optimized Implementation

 Level of Detail

– easily derived from the mipmap structure

– prune tree nodes below treshold computed by the distance of the

ray to the viewer

 Cache optimized mipmap data structure

– mipmap structure as 3D texture (consecutive levels in Z-slices)‏

– Interleaved mipmap data

 Perform binary + linear search in level 0

– very hardware friendly, however may cause artifacts

maximum

mipmap

+ bilinear patch

intersection

+ linear

binary search

256² 95 FPS 43 FPS 70 FPS

512² 87 38 58

1024² 75 33 50

2048² 70 27 40

4096² 49 22 35

 Iteration step comparison of common algorithms and MMM

Uniform stepping Relaxed CSM MMM
Steps

Performance

Comparison
 Algorithm complexity

– Relief mapping

– CSM = hard to analyse but in practice

– MMM = in practice logarithmic time

 Precomputation time

– Relief mapping = 0

– CSM = minutes to hours

– MMM = mipmap build time = < 10 ms

n

n

Comparison

relief mapping relaxed CSM maximum mipmap

256² 150 240 (~2min) 110 (0.17ms)

512² 103 233 (~15min) 102 (0.27ms)

1024² 56 227 (>8h) 90 (1.2ms)

2048² 32 n.a. 89 (2.13ms)

4096² 9 n.a. 77 (7.52ms)

Contribution
 Accurate

– ray – height field intersections with no artifacts

Contribution
 Dynamic

– negligible update time for dynamic height fields

Contribution
 Scalable

– high resolution height fields (4096²) at real-time frame
rates

Discussion

 Drawbacks

– depends on random mipmap level access,

which seems to be non optimized on current

GPUs

– for small heightmap resolution the brute

force search on current GPUs might even be

faster

Questions

Thank you!

http://www.tevs.eu/projects_i3d08.html

