
Maximum Mipmaps for Fast, Accurate,
and Scalable Dynamic Height Field
Rendering

Art Tevs*, Ivo Ihrke** and Hans-Peter Seidel*

*MPI Informatik, Saarbruecken, Germany

**University of British Columbia

February 17, 2008

Overview

 Height Field Rendering

– Per-Pixel Displacement mapping

– Effect of a highly tesselated mesh

– Used in games and scientific visualizations

 Ray - Height Field Intersection

– Depth-Map intersection (refraction, reflection)

– Collision detection

Related work

 Robert L. Cook, Shade Trees, Siggraph'84

– one of the first mentions of displacement mapping

 Fabio Policarpo et al., I3D'05 and I3D'06

– real-time relief mapping

– relief mapping of non-height-field surface details

 F. Policarpo and M. Oliviera, GPU Gems 3’07

– relaxed cone step mapping (CSM)

 Wyman et al., Szirmay-Kalos et al., Hu and Qin

– ray depth-map intersection for refraction and reflection

 Kyoungsu Oh et al. (VRST'06)

– pyramidal displacement mapping

Overview

 Problem Statement

– Fast, accurate and scalable algorithms are desired

– Fast pre-computation time of acceleration structure

– GPU optimized

Outline

 Maximum mipmaps data structure (MMM)

 Intersection Algorithm

 Performance

 Optimization

 Discussion

 Your questions

Maximum Mipmaps

 Equivalent to fully sub-divided quad-tree [Samet
1990]

 Already used in CG publications

– soft shadow rendering [Guennebaud 2006]

– geometry image intersection [Carr et al. 2006]

 MMM data structure is dynamic

– precomputation time in order of ms

 1/3 additional memory required

Maximum Mipmaps

 Collection of bilinear patches placed on a regular grid

 Level 0 – vec4 (RGBA) value storing height of the

bilinear patch data points

 Level 1 to n – maximum height of underlying patches

 due to optimized hardware the construction time is

very fast

Intersection Algorithm

 Utilize the MMM data structure as
quad-tree to perform empty space skipping

– Adaptive ray step length

– Hierarchical traversal, starting at the

highest level

– Bilinear patch intersection or binary

search in level 0

Intersection Algorithm

 Example of a Ray – Height Field Intersection

 1D height field and the corresponding MMM data structure

– linear elements in the finest levels

Intersection Algorithm

 Ray hits the bounding box of the Height Field

 Exit points below the maximum value -> refine

Intersection Algorithm

 Ray intersects the maximum value plane -> refine

Intersection Algorithm

 Ray does not hit the maximum plane -> move

Intersection Algorithm

 Ray exits below the maximum value -> refine

Intersection Algorithm

 no maximum height plane intersection -> move

Intersection Algorithm

 again here refinement is required

Intersection Algorithm

 traverse down

Intersection Algorithm

 move ray to the boundary

Intersection Algorithm

 ray at cell boundary with index divisible by two

Intersection Algorithm

 increase the mipmap level (traverse up in the tree)

Intersection Algorithm

 move ray to the boundary

Intersection Algorithm

 ray at cell with index divisible by two -> increase the level

Intersection Algorithm

 ray below the maximum height -> refine

Intersection Algorithm

 ray below the maximum height and level = 0 -> perform
ray-line intersection test

Intersection Algorithm

 Ray – Height Field Intersection point is found

Intersection Algorithm

 Hierarchy level updates:

– no level update

 linear stepping

– start from root

 not real effective because of more iteration steps

– optimal parent

 require extra look-up or dynamic branching computation to find the optimum

 not very GPU friendly

– one level up

 optimal solution for todays GPUs

Optimized Implementation

 Level of Detail

– easily derived from the mipmap structure

– prune tree nodes below treshold computed by the distance of the

ray to the viewer

 Cache optimized mipmap data structure

– mipmap structure as 3D texture (consecutive levels in Z-slices)

– Interleaved mipmap data

 Perform binary + linear search in level 0

– very hardware friendly, however may cause artifacts

maximum

mipmap

+ bilinear patch

intersection

+ linear

binary search

256² 95 FPS 43 FPS 70 FPS

512² 87 38 58

1024² 75 33 50

2048² 70 27 40

4096² 49 22 35

 Iteration step comparison of common algorithms and MMM

Uniform stepping Relaxed CSM MMM
Steps

Performance

Comparison
 Algorithm complexity

– Relief mapping

– CSM = hard to analyse but in practice

– MMM = in practice logarithmic time

 Precomputation time

– Relief mapping = 0

– CSM = minutes to hours

– MMM = mipmap build time = < 10 ms

n

n

Comparison

relief mapping relaxed CSM maximum mipmap

256² 150 240 (~2min) 110 (0.17ms)

512² 103 233 (~15min) 102 (0.27ms)

1024² 56 227 (>8h) 90 (1.2ms)

2048² 32 n.a. 89 (2.13ms)

4096² 9 n.a. 77 (7.52ms)

Contribution
 Accurate

– ray – height field intersections with no artifacts

Contribution
 Dynamic

– negligible update time for dynamic height fields

Contribution
 Scalable

– high resolution height fields (4096²) at real-time frame
rates

Discussion

 Drawbacks

– depends on random mipmap level access,

which seems to be non optimized on current

GPUs

– for small heightmap resolution the brute

force search on current GPUs might even be

faster

Questions

Thank you!

http://www.tevs.eu/projects_i3d08.html

