Max-Planck-Institut f tGr Informatik
Computer Graphics Group
Saarbriicken, Germany

Master’s Thesis in Computer Science

Realistic Real-time Rendering of Refractive Objects

Saarland University
Faculty of Natural Science and Technology |
Department of Computer Science

submitted by
Art Tevs
on July 12, 2007

Supervisor
Prof. Dr. Hans-Peter Seidel, MRlifInformatik, Saarkicken, Germany

Advisor
Dr. Ivo lhrke, MPI fur Informatik, Saarkircken, Germany

Reviewers
Prof. Dr. Hans-Peter Seidel, MRlif Informatik, Saarkicken, Germany
Prof. Dr.-Ing. Philipp Slusallek, Saarland Universitya8aiicken, Germany

Author: Art Tevs

Student number: 2500415

Address: Breslauer Str. 18
66121 Saarlircken

Statement
Hereby | confirm that this thesis is my own work and that | have documefitsoaces
used.

Saarbiicken, Juli 12. 2007

(Art Tevs)

Declaration of Consent
Herewith | agree that my thesis will be made available through the library of Gtamp
Science Department.

Saarbiicken, Juli 12. 2007

(Art Tevs)

Abstract

Physically correct rendering of inhomogeneous refractive objectsahtime is a dif-
ficult task. Many published works which address this problem requirere#tot of
computational power or can only reproduce a subset of optical effietiievable by a
realistic simulation of light behavior inside such structures. In this thesis,resept
a way for real-time rendering of complex refractive objects, descrilyea \mlumetric
representation. Our approach enables us to simulate a variety of physicaliyated
optical effects. The algorithm is based on the eikonal equation, the mainlgtesof
geometric optics. We derive a system of ordinary differential equaticatsaifows us
to simulate the propagation of light rays through an inhomogeneous reéantiex
field. Afterwards, a powerful image formation model provides for sdpa@ted ren-
dering effects, such as arbitrary varying refractive index, inhomeges attenuation,
as well as spatially-varying anisotropic scattering and reflectance npiegeWe also
propose an efficient wavefront propagation technique, achievedanidmplexity of a
particle tracer, which enables us to compute the distribution of differentadiance
values inside a volume of interest. Efficient GPU implementations enable usterran
combination of visual effects that were previously not reproducibleahtime.

Acknowledgment

| want to thank Prof. Dr. Hans-Peter Seidel for the possibility to work at@om-
puter Graphics group at Max Planck Institute for Informatik. | also warthémk my
supervisor for the duration of my research assistant job, Dr. Chrishan@alt.

| express deep gratitude to Ivo Ihrke and Gernot Ziegler for their emahe with me
during this project. | thank Naveed Ahmed for supporting me in reviewing ttte te

Thanks to Anders Sundstedt and Michael Schantin for their modeling cotirils
to the animation demo, created especially for this project. And finally thanks<4G @
for providing us with the permissions, for using their soundtrack in oueptaemo.

CONTENTS

1 Introduction 9
1.1 Idea e 10
1.2 Algorithm 10
2 Related works 13
2.1 Raytracing and Photon mappingapproach 13
211 RayTracing. i ittt 13
2.1.2 Photonmapping 14
2.2 Utilizing a streaming processor« v v v v v i e 15
2.2.1 GPU-based interactive refraction 16
2.3 DISCUSSION 17
3 Background 19
3.1 Gradientcomputation L 19
3.2 Optical Effects 20
3.21 SurfaceBRDF 21
3.2.2 Refractionand Caustics 21
3.2.3 Attenuation and Absorption 22
3.24 Scattering 23
3.2.5 Reflection and Fresnel equation 24
3.26 Emission 25
3.2.7 Dispersion 25
3.3 Conclusion e 27
4 Light simulation 29
41 RayoptiCs 29
4.1.1 Light propagation with Snell'slaw 30
4.1.2 The Eikonal equation and the ray equation of geometric optics . 31
4.2 Light and wavefront definitions 32
4.2.1 Lightsource e 32
4.2.2 Wavefrontrepresentation 33
4.2.3 Wavefront propagation 34
4.2.4 Irradiance computation 36

Contents

4.3 Conclusion e 37
5 Image Formation Model 39

5.1 Generalimage formation, 39

5.1.1 General volume rendering equation 39

5.1.2 Attenuation and the background 39

5.1.3 Reflection, Scattering and Emission 41

5.1.4 Discretization of renderingterms. 42

5.2 Discrete image formationmodel 43

53 Conclusion 45
6 Implementation 47

6.1 InputData e 47
6.2 LightSimulator 49
6.2.1 Initialization o 49

6.2.2 Wavefront patch propagation 50

6.2.3 \Voxelization of wavefrontpatches 50

6.2.4 Patchlistanalysis. 51

6.3 Viewrenderer 52

6.3.1 Raycasting 53

6.4 Conclusion 55
7 Results 57

7.1 Objects e 58

7.2 Results. e 60
8 Conclusions & Future Work 63
A Anisotropic materials 65

A.1l Birefringence 66

A.2 e-Ray propagation in uniaxialcrystals 67
A.2.1 Refraction and Internal reflectionefays 69

A.3 Absorption/Attenuation o 71
B Formulae 73
C Code Listing 77

CHAPTER1

INTRODUCTION

"In the beginning ... there was light”: these words can be found in a wonhd s book.
Humans knew from the beginning of time that light is indispensable for owepéon

of the environment. Light particles, photons, start their travel from a bglorce and
traverse at immense speed. They are reflected or absorbed by olejiectsthey reach
our eye. These light particles, which are absorbed by our eyesygeaiworld full of

beautiful colors on our retina. Our brain is then able to reconstruct tieoement in

our mind, so that we can feel the environment visually.

Computer graphics tries to reproduce the behavior of the light in a machin&simu
tion. To achieve very realistic representations, one can attempt to simulatehtaedr
of the light based on the actual light particle paths. Having a strong thé@gomet-
ric optics, one can deduce how light particles interact with the environmemwetrr,
due to limited computational power, one has to lower the expectations. Someparts
the light interaction with the environment can not be simulated and thus theqaddu
images do not look as realistic as one could see them in the real world.

Objects with complex optical properties are needed for a close simulationlity rea
in a virtual environment. A very simple example for a complex object can besa gla
water. For us, as humans, there is nothing amazing about it and it seema tquiie
simple object. But to correctly simulate the light interactions with such an object in a
virtual environment is not as an easy task as one might think.

Light particles from a light source have to pass through more than two nieatie: (
glass, water, air) before they reach our eyes. The light interacts witiméidéum while
it is travelling through it. At material boundaries or even inside a medium witmgtro
inhomogenity, the particle can be reflected or change its path in a complexDuay.
or dirt particles inside a medium can absorb or attenuate light. The abserieegy
is later emitted, usually as héatn many directions, so that a simple representation of
real-world light interactions is not really possible.

In this thesis we will introduce a general framework able to simulate the complex
light behavior. Most of these effects can be visualized in real-time on cortyrgdph-
ics hardware. The thesis can be understood as an expansion anifiea detsion of the
algorithm presented in [IZT07].

!Fluorescent and phosphorescent materials emit energy in the viséesp [Pri63]

9

Chapter 1. Introduction

Figure 1.1: Glass block with embedded SIGGRAPH logo. The complex behaivio
refraction is combined with a spatially varying attenuation inside the letters. Nete th
total reflection on the block boundaries.

1.1 Idea

The main idea of the algorithm is based on a simple set of ordinary differeqti@tions
derived from theeikonal equationthe main postulate of geometric optics [BW99]. The
eikonal equation §S |= n describes the spatial distribution of light arrival. The iso-
surfaces of the eikonal solutighare also called wavefronts.

Using Fermat's principle rays become characteristic of the eikonal equation. A
light ray, represented by particles, is always perpendicular to thefuate Therefore,
we represent the wavefronts by particles and thus provide a simple wappagate
the wavefront from a light source through the scene. Particle systarhecafficiently
simulated on today’s programmable graphics hardware. The radiamglyetransferred
by the wavefront, can be used to illuminate the scene. In our case, ligigyeoan
also be absorbed by the nature of the object’s material, giving us a posdibitépder
colored objects.

The same idea as for the wavefront propagation is used to cast viewiadnta
the scene. For this purpose, we define a rendering equation whichdgasempute
the radiance of the viewing rays. This, combined into a powerful, physioatiyvated
image formation model, allows us to realistically render refractive objects ktinea.

1.2 Algorithm

We represent our refractive objects by a volumetric data structure gpatially vary-
ing object properties in voxels. Thus, for example, we store the refeaittdex field,
responsible for spatially varying refraction, as a 3D volumeA more detailed descrip-
tion of the implementation of the scene representation using a volumetric dataistruc
can be found in Chapter 6.

10

Chapter 1. Introduction

Figure 1.2: Rounded cube consisting of three different glass layéght simulator is
capable to compute the irradiance distribution inside the object volume provdiimg
sparkle like structures during the rendering phase.

The rendering process is performed in two steps. Firktihd simulator, described
in Chapter 4, pre-computes the irradiance distribution, which is needed ttatentlue
scattering of light particles inside a medium. For this we introduce the conéept o
wavefronf. The eikonal equation is used to derive the ordinary differential equatar
the wavefront's propagation. The computation of the light trajectory threugfractive
medium is based on the properties of geometric optics.

The pre-computed irradiance distribution is used byfiea renderelin the second
step to realistically render the appearance of translucent objects in scatarticipat-
ing media, such as smoke. For scenes without scattering, we do noterdoglipre-
computation step, because the represented effects do not dependightttiistribution
in the scene.

In general, our framework enables us to reproduce a variety of dimatéx! effects
on a commodity Shader Model 3.0 graphic hardware. An expressive ifoagation
model (Chapter 5) combined with ray propagation theory (Chapter 4edefiom the
eikonal equationsupports the rendering of scenes containing objects with arbitrarily
varying refractive indices. It is also able to handle surface effectsanfitirary BRDFs
and view-dependent single-scattering effects with arbitrary scattehiagepfunctions.
Some of the non-geometric effects, like dispersion, can also be realisticalljased
within the framework. Advanced effects, such as total reflection, are iithpldtained
at no additional cost. The algorithm achieves real-time viewer performamodbjects
with complex refractive properties consisting of high resolution voxelmeawaata. The
implementation of our image formation model and the light simulator can be found in
Chapter 6.

2an iso-surface of equal time distance from the light origin

11

CHAPTER 2

RELATED WORKS

This chapter presents a selection of previous work done in the field dereg of
refractive objects. We show examples, results and discuss the assetsaaacks of

these algorithms with respect to real-time rendering applications.

2.1 Ray tracing and Photon mapping approach

An intuitive way of simulating light propagation through any kind of material ban
developed by using a truay tracingapproach. Ray tracing gives the possibility to sim-
ulate light rays which can be deflected on material boundaries accordihg physical
laws of reflection and refraction.

Most ray tracing algorithms achieve good results by recursively evatu&tirell’s
law at material boundaries. But a continuous computation of refractigatgwalong
arbitrarily varying paths, like in our method, would be computationally veryeasjve.
To overcome this problem and to be able to render volumetric refractivetehjath
continuously varying refractive index, one can use iso-surfacesidate boundaries of
different refractive indices in the data. However, such an appraagkires considerable
computation time, since explicit material boundaries, iso-surfaces, haesctunputed.

2.1.1 Ray Tracing

One of the first ray tracing approaches used to compute caustics aadtimafs was
backward ray tracing shown in [Arv86]. The algorithm uses multiple masse an
illumination map (similar to the photon map) which helps to compute the caustics seen
from the view point.

Stam et al. [SL96] have used, as one of the first, the eikonal equatioact® riays
through non-constant media with a continuously varying index of refraclibe authors
derived the ray equation of geometry optics to handle these media in a staagl&acer.
Their work is motivated by the rendering of natural phenomena, such agesir

There is some interesting work on interactive ray tracing simulation including re
fractions and caustics. One approach is described in [WWR§ It can solve various ray
tracing problems including refractions. The approach is based on aa@gdrsimula-
tion. However, for the computation of caustics, they use photon maps,gtoadiance
informations in a 3-dimensional regular grid. The algorithm produces ingpyessive

13

Chapter 2. Related works

Figure 2.1: One of the first synthetic image showing caustics, refractiothsedlec-
tions [Arv86]

results, as can be seen in Fig. 2.2. Unfortunately, the algorithm requinestham one
fast CPU, and typically runs on a PC cluster to handle the scene in an tiveraode.

Hakura and Snyder [HS01] propose a slightly different ray tracimyagech, which
they call hybrid ray-tracing. The authors combine a standard ray trasinigh simu-
lates complicated ray bouncing off local geometry, with environment mapshvdaip-
ture the more distant geometry. Furthermore, their algorithm handles trefrad
reflection very well by lowering the costs of computation. The producsedlte are
appealing, but the algorithm does does not run in real-time.

To increase computation speed some approaches utilize the GPU or otbiat spe
hardware. Very exciting work was done by Schmittler et al. [SWS02]. Tesgloped a
special graphics processing unit which is able to render ray-tracedsragnteractive
frame rates. Another algorithm, utilizing special hardware, can be foup@hh03].

2.1.2 Photon mapping

A simulation in the opposite direction (from light source to the object) can biesadh
using the photon mapping approach. Photon mapping was first introdyckid W.
Jensen [Jen96]. It is probably the most intuitive way to implement light gyapan.

In photon mapping the photons are sent out into the scene from the ligitesou
Whenever a photon intersects with a surface it is stored in so called phofowhieh
is usually a hierarchical tree structure, e.g. a kd-tree. If the photatinc@s bouncing,
a new propagation direction of the photon is computed. The photon map islused
the rendering to estimate the density of accumulated photons, as an estimagddoath
irradiance.

14

Chapter 2. Related works

(b)

Figure 2.2: (a) Realistic refractions and caustics rendered at 2.5 fram&pond on
8 client machines [WB$02] (b) Caustic computed by the photon mapping approach
described in [Jen01]

Rendering of realistic caustics, as with the photon mapping approach, tisdréta
the problem of refraction rendering. An interesting solution of the caustidering
problem with a photon mapping approach is described in [GWS04]. Thellgae
the photon mapping algorithm to achieve interactive frame rates across caymod.
Their solution is attractive, especially for the realistic rendering of caustiig the
algorithm requires a PC cluster with up to 36 CPUs. The computed resultsadistic,
but due to the strong requirements on computational power, this method isitadlesu
for everyday realistic refraction simulation.

2.2 Utilizing a streaming processor

Recently, researchers have ported native ray tracing or photon ngapfgorithms
to graphics hardware to achieve real-time performance. Some resaamgtaghics
hardware algorithms has explored the idea of simulating global illumination. Ma et
al. [MMO02] propose a technique to approximate nearest neighborlseatbe photon
map on a GPU using a block hashing scheme. Their scheme is optimized to baddee
width on the hardware, but requires processing by the CPU to build thestiataure.
Carr et al. [CHHO02] and Purcell et al. [PBMHO02] use the GPU to speecy tracing.
Purcell et al. [PDCO03] show a stream processor implementation for the photon
mapping algorithm. Their implementation uses breadth-first photon tracing tiodistr
photons using the GPU. The grid-based photon map is constructed dined¢iig graph-
ics hardware. The results are very impressive, however they carmandte volumetric
caustics and inhomogeneous refractive materials.

15

Chapter 2. Related works

Figure 2.3: Photon mapping computed on the GPU by [PD&}

A similar idea was presented by Purcell in his dissertation [Pur04]. Hegeltbtne
data structure for the photon map to a uniform grid, which can be condairditectly
on the hardware. In addition he uses recursive ray tracing for Epeilection and
refraction. His ray tracer uses the kiHgrid photon map to compute caustic effects.

2.2.1 GPU-based interactive refraction

Since the common graphics hardware has become programmable, it hagtbegrted
to port CPU-based algorithms to the new hardware . As already mentionesl pne¥i-
ous section, there are multiple algorithms implementing ray tracing or photon mapping
on a stream processor like a GPU.

The first refraction effects shown on the GPU were very simple and matigally
correct. There, a light ray (in most cases the ray between view point pathton the
mesh surface) is refracted only once. However, in many cases thisidbesffice and
at least double refraction is required.

One approach was introduced by Wyman [Wym05a]. The method can ampatex
refraction effects in real-time on the GPU. An extension of this algorithm éarloy
geometry was presented in [WymO5b]. Another interesting approachuadtyWand
and Strasser [WS03]. They suggest to compute reflective causticppngximating
surfaces with uniformly sampled light sources.

Wyman and Davis [WDO06] propose an interactive image space technigpeitoxa
imate caustic rendering on the GPU. The authors use a traditional twogetering
approach similar to photon mapping. In the first pass, the photons are ennitteloledr
contribution is stored in a buffer by rendering the scene as it was setbe bght source.

k-nearest neighbors

16

Chapter 2. Related works

In the second pass, the photons are gathered by an image-spact neigtgbor search.
The rendering is performed in real-time, but is limited to point light sourcesdaed
not consider volumetric scattering effects.

Shah et al. [SKO7] propose a full GPU implementation of an image-spaceidgeeh
for real-time caustic rendering. The authors create a caustic-map teytspating the
vertices of a refractive object onto the receiver’'s geometry. Thderémg is performed
in real-time and does not require any pre-computation. However the agpoan not
reproduce volumetric caustics and is limited to homogeneous refractive media.

Hu and Qin [HQO7] present an interactive, image-based approadhdarender-
ing of reflection, refraction and caustics. The method implements doubéetiefn by
computing the refraction vector on the determined back-face and froatefithe re-
fractive object. Furthermore, a new method for nearby geometry rieigdsrproposed.
However the method works only on objects with constant index of refraeatohis not
capable of simulating volumetric effects, such as volume caustics or scattering

2.3 Discussion

In contrast to these GPU techniques, we employ a more general model ofdight
propagation through continuous refractive media. Similarly, computationeofrth-
diance distribution in the scene volume enables us to reproduce volumegGtsett.g.
anisotropic scattering or volumetric caustics. A powerful implementation ofroage
formation model gives us the possibility to render various additional effeath as dis-
persion, emission, scattering, BRDFs and spatially varying attenuation witioimanon
framework.

Adaptive wavefront tracing also enables us to simulate error-boundedlinear
light transport with the complexity of a particle tracer. The computation time during
the update, which is required if the light position changes, is comparabledo sitite-
of-the art GPU methods reproducing fewer effects, e.g. only caustisstiopic me-
dia [EAMJO5].

Nevertheless our algorithm is in other aspects not as powerful as saimerelated
approaches, i.e. photon mapping, which can produce full global illuminatrions.
The disadvantages of a volumetric scene representation make our methaditaiye
for spatially confined refractive objects. However, the renderinfppmance and the
wide range of reproducible, physically plausflesalistic looking effects benefits from
the simplicity and generality of our method.

2within the limits of geometrical optics, see [BW99] for details

17

CHAPTER3

BACKGROUND

In this chapter we will explain the basics of geometric optics and some of itetaspe
used in our approach. We will describe particular optical effects whichbe simu-
lated with our algorithm. Some equations used in the further computations will @also b
presented and explained in an intuitive way. We complement with an introduction
gradients computation, which are required to derive valid ray equati@sgpied in the

next chapter.

3.1 Gradient computation

The gradient of a scalar field (i.e. spatially varying refractive index Yielch vector
field, calledgradient field and is defined as (in cartesian coordinates):

dn dn dn

§n(a§,y,z) = (%a dT/’ %)a

wheren(z,y, z) = n defines the refractive index field. There exist several methods
to calculate gradient vectors. In our approach we are using the most comettod,
central differencesThis method estimates the derivative by calculating the first terms of
a Taylor expansion.

i A ' Y - A IS
Gy, 2) o (LETO0BD I B0 0:2)
f(xay‘FAy,Z)_f(l’vy—Ava)
N , (3.2)
f(x,y,z+Az)—f(x,y,z—Az))
2Az

In our data representation we are using the six neighbor voxels, i.actigé& indices,
to compute the gradient at position, y, z).

Due to its nature, a gradient points in a direction normal to the iso-surfdaaafon
f. In our case, the iso-surface of the refractive index functiazan be interpreted as
the boundary between different media. Thus, the gradfanbecomes indicative of an
object’s surface normal. However, by using discrete input data (g.g- 1 for air and
ny = 1.5 for glass sampled at discrete positions in spagey;, z;)), we only receive
discretized normals. The gradient directions are thus only pointing in atiscumber

19

Chapter 3. Background

Figure 3.1: Wine glass object consisting of 128x128x128 voxels. (&p&ee index
field was pre-smoothed before computing the gradients. (b) No smoothiags @p-
pears blocky. Note how the smooth filtering unintendedly expands the bdead

of directions. This leads to the restriction that smooth surfaces can nepbesented
properly. To overcome this problem, we either have to use more samplesinggnore
processing power and memory, or we have to smooth the gradients (Fig. 3.1)

We use a simple three-dimensional smoothing operator to pre-smooth theivefra
index field. The operator is a three dimensional convolution kernel, whiapped a
priori to the volumetric object representation. The convolution kernebeacomputed
by a three dimension&@aussian functioms following:

gla,y.2) = e (T, (3:2)

For the standard deviations of the filter kernel we typically use values bat@&
and 1 voxels, resulting in object boundaries which extend over 2-3s/0khis yields a
so calledhalo-effect, produced by interpolated refractive indices on object bariesl

Other methods are equally valid for gradient computations, like a three dinmahsio
Sobel operator [SHB99]. In general a good smoothing operationfaactive indices is
indispensable to provide smooth surfaces.

3.2 Optical Effects

In this section we introduce the optical effects which can be simulated withppuoach.
We show, in short, how these effects arise in real life and describe heyvcidin be
simulated within our framework. Furthermore we define a light ray as a tpatél of
light particles (i.e. photons).

20

Chapter 3. Background

3.2.1 Surface BRDF

Thebidirectional reflectance distribution functiqalso called jusBRDF) describes the
ratio of reflected radiance to the irradiance incident on the surface. BRigF is a

material property of the viewed surface. The common definition of the BRB$-the

form:

dLy (6, ¢r)

fr(0i; @i, 6, dr) Li(0;, ¢;) cos O;dw;’

(3.3)

where(6,, ¢,) is the direction of reflected radiandg, (6;, ¢;) is the incident direc-
tion of the irradiancd.; anddw; is a differential solid angle in the incident direction.

The BRDF can either be described by mathematical models or measuredtior pa
ular directions and interpolated inbetween. The BRDF obeys the Helmhoitzaeity
principle, i.e. the BRDF remains unchanged if the incoming and outgoing dinsctie
interchanged.

Based on the BRDF, one can define varying surface properties auoe Banulate
different material surfaces. The ratio between reflected and inciddiance could also
be used beyond the Fresnel reflection (Sect. 3.2.5) to simulate more speati€idals
that can not properly be handled by the Fresnel equations.

3.2.2 Refraction and Caustics

Refraction is the directional change of a wave due to a change in its dpemutics, re-
fraction occurs on the boundary between two mediums with differentatefeaindices.
For example, a light ray refracts when it enters and leaves a glass.tréhgth of the
refraction depends on thefractive indicesof the two media bordering the boundary
and the angle between the light ray and the line normal to the surface thegéna two
media (Fig. 4.1). A good optical example for this, is the view inside a bowl démwa
Air has a refractive index of just over 1, and water has a refractigexrof about 1.3.
A straight object, e.g. a ruler, placed partially in the water, will appear tal lagrthe
water’s surface (Fig. 3.2 (a)).

Refraction is also the cause for caustics. Caustic effects appear,anigtn beam,
propagating through a refractive medium, is being focused. The methpdasent here
uses this relation to create realistic caustics. If a participating medium, e.g. smoke,
is present in the scene, light can be scattered in all directions at a cer¢aia point
(Sect. 3.2.4). Thus, if the object material through which the light is prapddacuses
the light, we obtain visible volume caustics (Fig. 3.2(b)). To create surfagstics we

21

Chapter 3. Background

(b)

Figure 3.2: (a) A real world photo showing the refraction effect. Thetligiis are bent
as they cross from water to air. (b) Volume caustics created by propgdjgtihparticles
through a glass sphere. Notice how the light rays are being focuse@ilJe

simply intersect a 3D surface mesh with the computed, volumetric irradianciualistr
tion.

3.2.3 Attenuation and Absorption

In physical opticsabsorptionis a process where the energy of a photon is transfered to
another entity, for example an atom. The effect is common and can be ssgwkere
in our daily life. Almost any object absorbs some portion of incoming light, wmelkes
us see it in different colors. For example, the ink of the text in this papsarhb almost
all light frequencies, giving an impression of black color. In refractitwe translucent
absorption of light during light propagation is also calltenuation

Attenuation is the process of decreasing intensity of an electromagnetitoadiae
to absorption or scattering of photons. We define attenuation as a scialaf,ffer each
color component, describing how much of a certain wavelength (color) isuzted at
the point¥ = ¢(t), during the propagation of the ray

Since the light ray has to propagate through a medium with some thicknesanwe ¢
define the attenuation factaxt, c) according to thebsorption law

a(t,c) = Lo - e Hd,

Here L is the initial radiance on the ray u is the absorption constant, also called
absorbanceandd is the thicknessof the medium.

Now in order to simulatspatially varyingattenuation, we have to change the equa-
tion slightly to

'here:d is the optical path length of the ray

22

Chapter 3. Background

\TM/ 1

@) /¢\
A
\

/¢\\
2

(@) (b)

Figure 3.3: (a) Scattering occurs when light originating at the light soscaéerson
material impurities, e.g. dust particles. (b) Wine glass showing refractidratienua-
tion. Wine attenuates green and blue components of the light resulting in alodd
fluid.

aft,c) = Lo - e Jo oale(s))ds, (3.4)

The function describes the exponential attenuation of radiance on (aje:(t)
due to a spatially varying attenuation functien. We will use this formulation later in
Chapter 5 to define the complete image formation model. An example of attenuation ca
be seen in Fig. 3.3(b).

3.2.4 Scattering

In physics,scatteringis a process where some forms of radiation are forced to deviate
from a straight trajectory by some localized non-uniformities in the medium dftrou
which it passes. In optics a light ray is spliito an infinite number of rays upon inci-
dence on a scattering particle. To imagine scattering, one can think of sreigtladticles
which reflect the incoming light in all directions (Fig. 3.3(a)). Scattering h&dps us to
see volumetric caustics directly, since it can be used to simulate fog or dustseehe
volume (Fig. 3.2(b)).

In our approach, we are using an anisotropic scattering phase funéticomplete
scattering function is currently not suitable for efficient GPU implementatitverdfore
we apply an approximation, presented by Henyey and Greenstein [hhildith depends
on only a few parameters:

1—92
2(1 — 2gcos @ + g2)3/2°

b= (3.5)

2pased on Huygen’s Principle a new wavefront is created at a scattenier

23

Chapter 3. Background

Figure 3.4: Black glass sphere reflecting the environment. The spheaigsial absorbs
almost the whole light energy such that only the reflection on the surfadsiliev (a)
Native reflection (b) Fresnel reflection. Note the use of fresneltemnsaimproves the
realism of the scene.

g is the anisotropy factor arttlis the angle between the r&and local light direction
v. The anisotropy factor is defined as one of the properties of the sceheaa vary
spatially.

3.2.5 Reflection and Fresnel equation

Reflection is probably the most intuitive effect of our daily life. We speaduatight
reflection, when the wavefront changes its moving direction on an ineebfaiwveen two
media without leaving the propagating one. When light moves from a mediumgicéa
refractive indexn; into a second medium, with refractive index, both reflection and
refraction of the ray may occur.

Since the light ray refracts and reflects on the border between two medidivided

into two rays. The sum of the radiance, transported by the two light rays, stays equal

to the radiance of the incident ray. How the energy is split up can be xippated via

the Fresnel equation It describes the behavior of light as it moves between media of

different refractive indices. The fraction of the reflected radiaiscgiven by theeflec-
tion coefficientR, and the fraction of refracted radiance, by trensmission coefficient
T.
The amount of reflection is computed with
n; cos 0; + n; cos 0,

R = (3.6)

n; cos 0; — ng cos 0;

and the transmission fraction is consequently

Sdepending on the critical angle total reflection may occur and the ray mpfibt

24

Chapter 3. Background

() (b)

Figure 3.5: (a) Real world photo of dispersion phenomenon on a prisg] [b) Em-
ulated dispersion effect with a three-pass computation of color comporeghtgneen
and blue.

T=1-R.

n; andn; are the refractive indices of the incident and transmitting medjais
the angle between the incident ray and the interface normafl@isdhe angle between
transmitted ray and the normal.

The refraction coefficient depends on the polarization of the light, bubmputer
graphics it is common to ignore polarization. It is also common to ignore the élresn
reflection of conductive materials (i.e. metal), since the amount of reflectares so
little that the human eye has problems to detect them.

Fig. 3.4 shows the difference between native and Fresnel reflection.

3.2.6 Emission

In optics, emission is a physical process where light energy, i.e. phaonseleased
from another entity. In our case, we define emission as a scalarIfi€ié) for each
color component. The value is also calleaittanceand quantifies how much radiance
is emitted. Theemitted radiancelepends on the positiofiand can be evaluated given
volumetric descriptions of its distribution.

3.2.7 Dispersion

In optics,dispersioris the effect of separating the light faiyto its spectral components
with different wavelengths. The effect occurs because of the diftespeed of light for
different wavelengths.

4e.g. a white colored light ray is composed of different colored rays

25

Chapter 3. Background

The common consequence of dispersion is the separation of white light intddts c
components (i.e. color spectrum). For example, this happens with wateridrthie air,
which is why we are able to see a rainbow. Another common example is a prism.

The equation to compute the wave speed in a medium is

v=—,
n

wherec is a constant (i.e. speed of light in vacuum) anid the refractive index.

In general the refractive index is a function of the light wavelengteon = n(\).
The wavelength dependency is usually quantified by empirical obsersatton visible
light, most transparent objects have some order for wavelength aadtiedrindices:

1< (A ed) < n(Agreen) < n(Apiue)

or in other words

dn
an .
s

This is also calledhormal dispersiondue to decreasing refractive index by increasing
wavelength.

We use pseudo-multi-pass-rendefirig compute the radiance for each color com-
ponent. The more passes we use, the more colors we can simulate, yielde@asingly
better approximations of the dispersion effect. We use the dependehoies and ap-
proximate the refractive index equatien= n(\) for each pass, by using the empirical
relationship, also known &auchy’s equatiofiBW99]. The equation however, works
only well for areas with normal dispersion in the visible wavelength regiahthis is
sufficient for our purpose. We use a two-term equation of the form:

(3.7)

whereA and B are the coefficients of a material. The coefficients can be determined by
measuring refractive indices of known wavelengths.

Having this information available, we are now able to create refractive ifidiels
for each of the relevant wavelengths. If scattering is required, a muds-pae-
computation of radiance distributions for each of the color components isrpexd.
The succeeding rendering step then results in the effect of dispeRmpr3.5 shows a
three-pass rendering for the colors red, green and blue.

Swe compute simultaneously the results for each color component in tadra shader while render-
ing the scene volume.

26

Chapter 3. Background

3.3 Conclusion

This chapter has demonstrated a variety of optical effects that are alll lo@isthe ge-
ometric model of light. With the help of multipass rendering we can also provide an
emulation of advanced effects like dispersion, for example.

We introduced the concept of gradients and have shown how they camiputed.
Prior to gradient computation we have to smooth the refractive index volumevap
smooth objects, excluding the use of high resolution data. However, due sortboth-
ing we get blurry object boundaries which unfortunately affect thismeof the scene
negatively. Here one has to take care not to "over-smooth” the scene.

By handling reflectance properties with the help of Fresnel equation8RDIFs,
we are able to render the refractive and reflective objects in a moretiealesy than
before. An approximation of the anisotropic scattering function givesaipaissibility
to simulate various volumetric effects like fog, shadows, and caustics.

Since almost all parameters may vary spatially, we are able to simulate the light pro
agation more precisely than other algorithms. The formulations of the speftéfatse
shown here help us to derive a proper image formation model which caffidiergly
implemented on common graphics hardware. In the following chapter we nave de
ray equation to propagate the light through the scene volume.

27

CHAPTER4

LIGHT SIMULATION

This chapter starts off with an introduction to the basics of ray optid%e continue
with introducing a wavefront representation for light sources. We w#spnt the

eikonal equatiorand describe how this equation can be used to simulate light propa-
gation through the scene volume. The derived first order ordinamgrdiitial equations

for the light ray propagation assist in understanding how light travelsigira medium

with spatially varying refraction. Finally, we will show how to gather irradieanalues

out of the wavefront to compute the illumination in the scene.

4.1 Ray optics

Geometric optics, or ray optics, describes light propagation in terms of”r&ays are
bent at the interface between two dissimilar media, and may be curved in a medium
which the refractive index varies in space. Its geometry thus depen@® grosition
(inhomogeneous refractive index field). The "ray” in geometric opticsaspdith for a
single light particle. A ray is perpendicular to the wavefronts of the actulaf ligaves.
Geometric optics provides rules for propagating these particles througtiaal system
and thus describes how the actual wavefront will propagate. Note tisaistbnly a
simple model to describe light propagation. It fails to account for other aiptitects
such as diffraction and polarization.

Forward or backward ray tracing approaches use this model to tratélighgh the
scene back to the light source or to the view point. Similarly, photon mappingthigs
make use of this model to describe how the photons move along the optical paths

In our algorithm we will propagate wavefronts based on this ray definidomave-
front is an iso-surface of constant travel time originating from a lighte®u Due to
Fermat’s Principle, we can use ray optics for wavefront propagatiang dight rays
always travels normal to these wavefronts (Sect. 4.2).

Due to the computational discretization we are not able to define the wavetnon
tinuously. Therefore, we break the wavefront into a numbevaifefront patchesEach
wavefront patch represents a part of the wavefront as a small al@giadya fraction of
the light wave energy (Sect. 4.2.2).

Ywe handle here only opticaligotropic materials [BW99]; foranisotropicmaterials see appendix A

29

Chapter 4. Light simulation

P ni n9 index
01
O x
interface Q
Figure 4.1: jiiiiii -mine Snell’s law; The propagation time of light from P to @is-
imal, if the sines of the ray angles in different media are in ======= Snell's Tdve

propagation time of light from P to Q is minimal, if the sines of the ray angles in difiter

4.1.1 Light propagation with Snell’'s law

Fermat’s Principle states thtite path taken by a ray of light between two points is the
path that can be traversed in the least tim8ometimes this is actually used as the
definition for the ray of light. The principle can be used to derive the lavefriction
known as Snell’'s law:

nysin(fy) = nasin(6). (4.1)

tion direction at the boundary of a medium. However, when light moves frolenae

to a medium of lower density, such as from water to air, wf%reg 1, Snell’'s law
can not be applied. At this point, light is reflected in the incident medium, kresvn
======= This equation gives us the possibility to compute a vector of thaatefd ray
direction at the boundary of a medium. However, when light moves frompéinadly
dense medium to a medium of lower density, such as from water to air, vglfﬁegel,
Snell’s law can not be applied, i.e. if the incident angle exceeds the so caitliedl
angle At this point, light is reflected back into the incident medium. This behavior is

If the refractive index of a medium is not constant, but varies with positian the
material is known as gradient-index mediumn our case, we define tisgene volume
V' as a gradient-index volume storing gradients of refractive indices insioxe

Assume now that we want to simulate the propagation trajectory of a light ray
through a scene volunié. A possible implementation is to apply Snell’s law at medium
boundaries. Furthermore there must be a check for the critical angigpliptae reflec-

30

Chapter 4. Light simulation

tion law if the critical angle is exceeded. This can be avoided if another, gereral,
formulation for the propagation of light rays is used.

4.1.2 The Eikonal equation and the ray equation of geometric dps

In physics, light is described by a complex wave equation, varying gagesand time.
Theeikonal equatioiBW99]
| VS |=mn, (4.2)

is obtained from the wave equation by letting the wavelength go to zero andg) tiden
limit. S(&) is a real scalar function of position defining the optical path. The funcion
is also calleckikonal

The surfaceS(#) = const is called(geometrical) wavefronand describes an iso-
surface of constant travel time of light from a light source. Equation ttes that the
magnitude of the wavefront gradiéris the refractive index.

Let us now deriv@ an equation for ray propagation in a refractive index fielth
accordance with Fermat’s principle, light rays propagate perpendiculae wavefronts.
A ray in space can be defined as:

_dz
ds’
We assumeé # |= 1. Since the gradient of the wavefront points in the directionof

(4.3)

with magnituden, we can write

¥ S d¥

VSZ”U:”£<:>|§S‘—£ (4.4)
Taking the gradient of the squared eikonal equation we get:
V(VS)? =2vS-v(VS) = 2nyn. (4.5)

Based on the definition of the nabla operator and applying the chain ruketeral
variables we have: p .
- r - -
25V = V(). (4.6)

2in contrast to Born and Wolf we are usirﬁzj (nabla operator) as the notation for a gradient vector, so

grad(f) = v f
3The derivation follows [BW99]
“we define the refractive indexasn = n(Z) and stay in cartesian space.

31

Chapter 4. Light simulation

Combining now Egs. 4.4, 4.5 and Eq. 4.6 yields:

S oo A7 - - d - d , d7 ;
2yS - v(vs) = 2”% -v(vS) = Qn% S = 2n£(n£) =2nyn
Dividing by 2n gives:
d 6 dr -
5(v) = vn. 4.7)

The equation describes the trajectory of a light ray in an inhomogenefrastiee
index fieldn(Z) and is known as the ray equation of geometric optics. A simple substi-

—

tution offl—f = ¥ gives us the following set of first order ordinary differential equagion

n

d¥ W

= _Z 4.8
ds n (4.8)
W _ o (4.9)
ds

ds defines an infinitesimal step in the direction of the ray. Equation 4.8 furtloeides
us with a constant spatial step size parameterization, $i§§d: 1. This is advanta-
geous for rendering, where the number of particle trajectories showg@greximately
equal to get optimal performance.

4.2 Light and wavefront definitions

The derived Eq. 4.7, based on geometrical optics from Sect. 4.1.3, gsva relatively
simple way to simulate a light ray propagating through an inhomogeneoustiedra
index field. But for a complete simulation we need to model the light source and its
wavefront as well.

4.2.1 Light source

A light source emits photons which propagate through a medium, according kavwk
of physics, until they reach our eye. The same idea is used by ray trg®#&eg 2.1.1)
and photon mapping (Sect. 2.1.2) to simulate the light.

In contrast, we define the light source as an emitter of a wavefront. Thesbginte
is associated with a vector field describing tbeal light directionv(#) = v and a 3D
scalar field ofdifferential irradiance values\E,, (Z). The local light direction can be
seen as the travelling direction of a single photon. The differential irradiaalue,

32

Chapter 4. Light simulation

orthogonality

Light
wavefronts

Light source

- N

Light rays

\ \“ \
Viewing ray
Scene volume

Camera

Figure 4.2: 2D illustration of our complex image formation scenario — due to ingemo
neous material distribution, light rays and viewing rays are bent on thgithwaugh the
scene volumé&'. Light rays always travels orthogonally to the light wavefronts. Light
wavefronts are the iso-surfaces of constant travel time from the ligintso

sometimes also callédtensity describes the energy stored in the wavefront.

4.2.2 Wavefront representation

We see the wavefront as an iso-surface of points, in our case phbmrnsg the same
phase or constant travel time, originating from a light source. The simifolastof a
wavefront is aplane wave The corresponding rays are parallel and their direction is
perpendicular to the wave. We use such a wavefront to model a dirddtgintasource.

A spherical wavefrontdescribed by a sphere of radiis defines a point light sourée
Later, we use these representations to initialize a wavefront beforepiagates through
the scene volume.

We define the wavefront as an adaptive set of inter-connected psirfmd¢ches)
propagating independently through the scene volume. The connectivityriafion is
needed for differential irradiance computation (Sect. 4.2.4) and eocwnding. The
wavefront is discretized into so-called wavefront patches. The localdigéctionv is
represented by the travelling direction of a particle and the differentialianae value
AE,(Z) can be computed from the area of the wavefront patch. Fig. 4.2 illustrates a
example constellation of a point light source and its wavefronts in a scéma&o

Ssince the radius of a point is equal 0, we set the initial radius of a sphewafront toR = ¢, so that
it covers the scene volume

33

Chapter 4. Light simulation

4.2.3 Wavefront propagation

In the previous section we have defined a wavefront as an adaptivé sennected
points, or patches. The corners of a patch are given by the fourbmigly particles.
These are propagated through the inhomogeneous refractive inttex lirecase the
wavefront becomes under-resolved, new particles/patches areagehby subdividing

the corresponding patch to preserve a minimum sampling rate. We also defavea
front patch as a container of some finite differential irradiande, (). Due toattenu-
ation, defined as a scalar fietd,, the irradiance can be consumed by the corresponding
scene voxel. In real life the same effect can be seen in colored glaseviavelengths
are attenuated, so that only the colors passing through can reacheour ey

In the end, we obtain an irradiance distribution over a scene vol-
ume, produced by a propagating wavefront based on the assumption that
the energy of a patch is absorbed by scene points. The computation of
such a light distribution is performed with the following pseudo algorithm:

- dt =time step

- while in volume

propagate wavefront by timé

compute irradiance of wavefront patches

voxelize data

refine wavefront

In case a wavefront patch does not touch a voxel with its corner partible voxel's
refractive index does not influence the propagation of the patch. dHgrecwavefront
would not be simulated correctly if a patch was larger than one voxel. Toiatkev
this, we adaptively split a wavefront patch once it grows too large (Fig8). 4To be
able to voxelize the irradiance distribution we equate the wavefront patakiesheir
midpoints, and store the differential irradiance value and local light dire¢patch
direction) into the current voxel.

Propagating the patch particles with the derived equations (Sect. 4.1.R) reak
the wavefront, since its particles would go out of phase. This means thatlgmde-
scribing a wavefront patch and propagating through a medium while takingtant
spatial steps destroy the equitemporal nature of the wavefront patchpfiénomenon
comes from different propagation "speeds” (or in other words; diffetemporal steps

34

Chapter 4. Light simulation

Figure 4.3. Adaptive wavefront refinement. (a) 2D illustration: the wawrgfis repre-

sented by patrticles (red dots) that are connected to form a wavelilaetljnes). While

advancing through the voxel volume (shown in gray) the wavefront setieéed such
that its patches span less than a voxel. (b) 3D illustration of the tessellatiaméor
wavefront patch.

for the same distance) of particles inside a medium. The curvature of areaiphtch
would break and lead to unwanted results (e.g. the patch area is wrosgjutfon for
this issue would be a scheme for wavefront curvature tracking as singivitH92].

Another solution is to derive an equation providing constant temporal sbepisef
ray equation. This means, that we would like to have an equation giving pes$séility
to specify a temporal stegt instead of a spatial stegis to propagate the wavefront
particles through the scene volume. We are thus looking for a parameterivdi@re:

ds - dz
— =S -—=1 4.10
7 = VS =1 (4.10)
so that infinitesimal changes of the eikonal functi®mvith respect to parameterare
constant.
Inserting Eqg. 4.4 into Eq. 4.10 and applying the chain %Ie: %Z—Z yields
n@ @ =1
ds dt
o 4 dfds 1
ds dsdt n

35

Chapter 4. Light simulation

We already know from the eikonal equation téét:
from the equation above that:

g; . Therefore we can follow

di dids _ 1
ds dsdt n
79 7S ds 1

o VS VS ds _
VS| |wvs|dt n

ds 1

This is a nice result, because now we can re-parameterize Eqs. 4.8 aodué®
the constant temporal instead of constant spatial step size. Applyingairercite and
substituting the results above yields

A dids @ 1 @
i _dids @ 1 _ @ 4.12
dt dsdt n n n2 ()
and
i dids - 1 wn
@ dsd V" n T @19

Combining both equations, by solving fat, we get the ray trajectory equation for
a constant temporal step size,
d 2df s
- = 4.14
no (") =vn (4.14)
This formulation gives us the possibility of a fast GPU implementation for the wave
front propagation by using a modified particle system. Once the wavefamtbe

tracked over time, we can compute differential irradiance values at po@myin space
from the area of the connected particles.

4.2.4 Irradiance computation

Irradiance is a radiometry term for the incident power of electromagnediatian at
a surface, per unit area. If a point source radiates light uniformly idiedkctions and
there is no absorption, then its irradiance drops off in proportion to thendistaom the
object squared, since the total emitted power is constant and it is spreagoarea that
increases with the square of the distance from the source [DBBO06].

In other words, irradiance describes energy per surface area giwren incident
radiation. Our light source’s irradiance is stored in a wavefront. Toegeach patch
in the wavefront is initialized with some initial irradiandg,y, depending on the light

36

Chapter 4. Light simulation

Figure 4.4: The intensity law of geometric optics (left) and its discretized we(sight)
in the form of astream tube The product of area and differential irradiance is constant
along a tube of rays.

source. By propagating through space, the irradiance value of agaiayrow larger or
smaller, depending on the patch area. This is also knovwntassity law of geometric
optics [BW99], see Fig. 4.4. The law states that the energy in a ray tube is always
constant:

dE,1dS1 = dE2dS (4.15)

We can thus see, that by increasing the al®ga the corresponding energjZ,,» has to
be decreased. Therefore, the energy is indirectly proportional ta¢laeoha wavefront
patctf. With this information and Eq. 4.15, we can deduct a discretized version:

AE,(t)A(t) = AEL(0)A(0) & AE,(t) =

AE,(0)A(0)
i (4.16)

(t)

whereAE,(0) denotes the initial irradiancg,o andA(0) the initial surface area of a
wavefront patch. As already mentioned, these values are set oring ¢hitialization
and depend on the properties of the light source and dimensions of tieérorty

The wavefront patch is spanned by four particles representing itsemsorn
(Sect. 4.2.2). Due to the connectivity information on the particles, we can wemp
for every timet the surface area of a wavefront pattfr). Hence we can also compute
the discretized differential irradiance valddy,, (t) associated with a wavefront patch at
timet.

4.3 Conclusion

In this chapter we have shown some basics of geometric optics. We haéddsa
way of using Snell’s law to simulate light transport through a refractivexigdd.

Sarea of a wavefront patch in Fig. 4.44s

37

Chapter 4. Light simulation

Afterwards, we introduced the concept of light wavefronts. With the loélthe
eikonal equation §S |= n and Fermat’s principle we were able to derive the ray
equation of geometric optics, Eq. 4.7, for a massless particle travelling thiarugn-
homogeneous refractive index field. We use this principle to compute viensysy
implementing a ray casting approach.

We defined the light source as an emitter of a light wavefront. The wavean
adaptive set of patches, with corners represented by particles. artielgs are then
propagated through the scene volume to compute the irradiance distributiorup+
dating the wavefront patch positions and sizes we have used Egs. 4l¥21&1 This
was done to keep the temporal step size constant. Finally, we have shawpl@way,
based on the intensity law of geometric optics, of computing the differentialiamae
values of the wavefront patches.

The equations derived in this chapter allow for an efficient GPU implementation
which, combined with a proper image formation model, enables a realistic regadér
refractive objects in real-time.

38

CHAPTERDS

IMAGE FORMATION MODEL

In the previous chapter we have introduced the basics of geometric optigeesented
how a light wavefront can be propagated efficiently through the sceluene. In this
chapter we will introduce the image formation model used for the radianceutatign

of the viewing rays We derive an image formation equation for our approach, and
present a simplified form ready to be implemented on the GPU.

Another issue will be to show which effects can be simulated with the stated model.
We will also present some results, giving an impression of how diffeféetts, included
one by one in the image formation model, contribute to the realistic look of the.scene
Finally a pseudo code version of our implementation will be presented.

5.1 General image formation

5.1.1 General volume rendering equation

We have previously defined our scene volume as a three dimensioradtredrindex
field. To compute a viewing ray’s radiance, we require a proper formualatfo very
common approach is to usevalume rendering equatiomvhich describes how the radi-
ance of a light ray changes as it travels through a volume of data.

Virtually all volume rendering algorithms try to find a good approximation for the
low albedo volume rendering integral presented by [Bli82] and [KvH&4gst of the
volume rendering algorithms approximate the following integral:

L(r) = / ’ Le(t)e™ Joods gy, (5.1)
0

whereL.(t) is aradiance function including emission, scattering and reflectiof).
is the opacity function. In our casg(s) = o,(c(s)) and represents the attenuation
function (Sect. 5.1.2). We will expand the above definition to a suitable folitchwcan
be easily discretized and computed on the GPU.

5.1.2 Attenuation and the background

The rendering equation uses an opacity function, as we already feavendbe previous
section. Comparing the inner integral of Eq. 5.1 and the attenuation integraB.E,

39

Chapter 5. Image Formation Model

(b)

Figure 5.1: Glass spher@28® voxels) refracting the viewing rays. (a) Refraction only
(b) Refraction combined with attenuation; red and blue light components ane aibel,
producing green colored glass.

presented in Sect. 3.2.3, we can already see that they are identicald,lodeattenu-
ation definition corresponds completely to the opacity function presented vokinme
rendering equation.

Hence we expand Eqg. 5.1 to the following form

L(c) = / Lo(Z, D)alt,)dt, (5.2)

whereL(c) denotes the resulting radiance due to the whole optical path length of the
ray c. The position in spac and the local light direction’ are defined ag = ¢(¢) and
U= %. The local light directions are precomputed previously in the light simulation
step as described in Sect. 4.2.3.

Equation 5.2 does not handle the scene background. Thus the peogering of
a volumetric object in an environment is not possible. We therefore dudtleground
term Ly, to the final equation, implicitly assuming the background is at infinite distance.
We also have to apply the attenuation factor to the background term fectapproxi-

matiort.

L(c) = /Lc(f, V)a(t, c)dt + Lygo(too, €) (5.3)

Defining the background at infinite distance has some disadvantagesnfiering
nearby geometry seen through the refractive object. This is a cugstniction, but our
algorithm could easily be extended to support non-volumetric objects atdisignces
around the scene volume. A possible implementation of such an approadtithdd

limagine the background as the last, infinitesimally thin layer in the volumetric data

40

Chapter 5. Image Formation Model

by Wyman [WymQ05b]. A simple implementation of nearby geometry was used ttecrea
ground truth comparisons to a ray tracer (Chapter 7).

5.1.3 Reflection, Scattering and Emission

In the previous section we have presented an equation for our imagetifmmmais
already shown in the general volume rendering equation, Eq. 5.1, thd teiswsed to
compute contributions of emission, scattering and reflection to the light ragxpfess
L. in terms of these variables as:

Le(Z,0) = 0Ly (Z,) + 8(Z)RL, (T, 7) + Le(T) . (5.4)

L denotes the radiance due to inscatter, and the scatter strength, also known
asalbeda Albedo is the ratio between scattered and incident radiance. Normally, the
albedo depends on the local ray direction and directional distribution ofrirg radi-
ation. In our case, we set it tb = —2+—, whereo, is scattering and-, the absorption

0s+0q’

coefficient.

We formulateL; in terms of the scattering phase functipfEq. 3.5) presented in
Sect. 3.2.4. The light contribution due to inscatter is integrated over theesphetl
incoming light directions. It is spatially varying and depends on the locatliggction
v and the differential irradiancéFE,, from the directiono.

Lo(7,) = / (7,7, 3)dE,, (5.5)
Q
Similarly to L, we define the reflected radiante as an integral over all directions,

L.(%,U) = fr(&,0,0) cos OdE,,, (5.6)
Q4

whered is the angle between the surface norraind the incident light directiosa.
The surface normal can either be provided as an additional functiamguuted directly
|§Z| (Sect. 3.1).

The reflected radiance term is triggered by the Dirac delta funétighin Eq. 5.4
which serves as a boundary indicator, i.e. it integrates to one over dégtiand is zero
elsewhere. This way, we compute the reflection only on boundaries betliféerent
materials. As already described in Sect. 3.2.5 the Fresnel fRaletermines how much

of the reflected radiance contributes to the light ray. The transmissiorr fAabb the

from the gradient of the refractive index fieltl=

2The boundary indicator could also be computed from the refractivexigdagient, since its length is
unequab only on the interface between different refractive indices/media (sele Cisting C).

41

Chapter 5. Image Formation Model

Figure 5.2: (a)L, becomes active on the material boundary between glass and air, and is
responsible for reflections of the environment (Fresnel reflectidnshdditionally, L

and L. have become active. Scattering gives a feeling of impurities inside the glass.
small blob in the center of the glass, emitting radiance, gives an impressionsipd:
rescence.

Fresnel equation enters into Eq. 3.4 and describes the amount of mdiansmitted
from the refracted ray to the observer. We compute the global transmfssin7'()
asT(t) =T, - Ty - ... - T,,, whereT; is the transmission factor of the Fresnel equation
(Sect. 3.2.5) for the refraction event

Finally, the functionL. (%) describes the amount of radiance emitted at the position
Z. The function can be used to model multiple scattering effects or self-emidsmn
to fluorescence or phosphorescence. It can either be definedthaouimplicit func-
tion or as one of the properties of the scene volume. It can not affegfidhal light
computation, though.

5.1.4 Discretization of rendering terms

L, L, and L. depend only on the 3D positiafi in space and the local light direc-
tion . Therefore their values can be evaluated locally, given volumetric igéstis of
their distributions. This locality of.. is important for the efficient parallelization of the
computations on the GPU.

The rendering equation in its general form, as shown in Eq. 5.4, is too cehodbe
evaluated in real-time. Therefore we have to simplify it with the following assumgtio

- there are only a discrete number of light sources in the scene, and

- for each pointin the scene, there are only a discrete number of incomimgdigs
from each of the light sources

42

Chapter 5. Image Formation Model

These restrictions allow us to discretize Eqs. 5.5 and 5.6 into discrete sunmalove
incoming light directions,

Ls(2,7) = > _p(Z, 7, AE,, (5.7)

and

—

Ly(Z,7) =Y f(Z,5,1;) cos0AE,, (5.8)
J

With the help of the algorithm’s numerical approximations presented in the pievio
chapter, we are able to evaluate the above equations and thus Eqg. 5.4 thitiy moore
than the available local values. This leads to an efficient GPU implementation.

Discretization of attenuation factor a(t, c)

The attenuation factot/ (i, ¢) stands for a discrete version ef(t,c), as shown in
Sect. 3.2.3, and is defined analogous as

o (t,c)=1Lo-e” Sh=o alc(k)As

The equation can be rewritten as

o/ (t,¢) = Lo-e %, (5.9)

whered is defined iteratively as
di+1 = OAZZ + O'a(f)AS.

Here Z is a spatial point on the ray curve This way, the attenuation factor can be
updated along with the position and direction of the light ray, Eqgs. 5.11 a2d 5.1

Having discretized the terms, we can now derive a discrete image formatiogl mod
to compute the radiance of a viewing ray propagated through the re&adiject.

5.2 Discrete image formation model

We sample the light trajectory with a constant spatial step size. This is one pfdpe
erties of the ray equations derived from the eikonal equation. Due toattueenof the
equations of geometric optics, the simulation also supports ray bending akwe fieta

43

Chapter 5. Image Formation Model

tion. We would like to discretize Eq. 5.3, since this yields one general apipfoathe
realistic rendering of refractive objects.

In the previous section, we converted the integrals into sums by making simplify-
ing assumptions about the light sources. We have also derived diserstens ofL
(Eq. 5.7),L, (Eq. 5.8) andx (Eqg. 5.9). Now, we combine them infg. and thus obtain
a discrete version of the rendering equation, Eq. 5.3, which has to heaw during
the rendering process for each viewing ray.

We discretize Eq. 5.3 into a discrete sum:

L(c) =Y Le(,0)c/ (t,¢)As + Lyge! (oo, €), (5.10)

—

using the discrete versions of the attenuation functi¢h ¢) and L.(Z, ¢/), as show in
Sect. 5.1.4.

The trajectory of the light is described by the first order differentiala¢iguns, Eqgs.
4.8 and 4.9, presented in Sect. 4.1.2. Using a simple Euler forward scheroanwe
discretize the equations:

. LA
Tit1 = Ti + Fwi (5.11)

Wip1 = Wi + Asyn. (5.12)

If necessary, also higher order integration methods could be usedtie.gunge-
Kutta family [PTVF92]) to discretize the equations.
The algorithm for computing the resulting radiance will therefore look as faliow

- while ray is in the volume do

- acquire all spatial data

- computelL,., Lg, L,

- Qip1 = G4 + 04 () As

- o/(t,c) = Lo - e %

- computeL,

- Liy1(c) = Li(¢) + Lo(Z,0)d (t, ¢) As

- computer;, 1 andw; 1

- add the attenuated background tekgya’ (t, c)

44

Chapter 5. Image Formation Model

This pseudo algorithm is the basis of the view renderer in the next chaftee
view renderer evaluates the rendering equation, Eq. 5.3, for eathieadng ray. A
more detailed description of the implementation is presented in the next chapter.

5.3 Conclusion

In this chapter, we have shown a general, physically motivated image formmatdel,
which allows an efficient implementation on the GPU. The computation is based on
a volumetric representation of the scene data. We have demonstrated sitipiigica
for the Eqgs. 5.5 and 5.6 to enable an efficient implementation of the main regderin
equation.

For the realistic representation of refractive objects, we had to incapearious
effects such as Fresnel reflection, surface BRDFs and scatterasg ffhinctions. Ex-
ample images demonstrate why the implementation of these effects is so important for
realistic image synthesis. Finally, we have combined the image formation model into
one discrete equation (Eq. 5.10).

In the next chapter we present an implementation of our algorithm. We use the
equations from the current and the previous chapter to state an eftacidrfiowerful
implementation. The light simulation and the view rendering is performed completely
on the GPU.

45

CHAPTERG

IMPLEMENTATION

We have already shown the underlying mathematics of our renderingaagtprin this
chapter we present details, describing the implementation of the light simulatdhen
view renderer. We complement this with pseudo code to simplify the undeisgand

The first part of this chapter implements the theory of Chapter 4. The lightationu
computes the movement of the wavefront through the scene volume. The datp is
comprised of differential irradiance values and local light directions efitiht rays for
each point in the scene.

The second part explains the inner working of the view renderer. TBvenenderer
implements the theory of the image formation model and the optic effects presented
Chapters 5 and 3. It demonstrates how the rendering equations,cifenivibe viewing
rays, can be implemented with little hassle. Some pseudo code, combined witlea shad
implementation, shows a practical implementation of the image formation equation.

6.1 Input Data

For proper rendering of any refractive objects, we have to agreepan data formats.
Since we evaluate the image formation equations with spatially varying funcléwgs,
scale input data have to be provided to the algorithm.

Our volumetric scen& is stored as a set of 3D volume textures. To render a com-
plete scene, including all input data, we require up to eight RGBA volumertsxtu

T1 Refractive index and gradient field

T2 Attenuation scalar field (R,G,B)

T3 Differential irradiance values (lllumination data (R,G,B))

T4 Local light direction of the wavefront

T5 Emission scalar field (R,G,B)

T6 Opaqueness indicators

T7 Reflection information (only for boundaries)

T8 Auxiliary spatially varying data (i.e. anisotropy factor, scatter strength,...)

47

Chapter 6. Implementation

The light simulator (as described in Sect. 6.2) requires textures T1 anslif@w. It
outputs the differential irradiance values (T3) and local light directidd3.(We do not
have to recompute them as long as the properties of the light source, dmtiwhiesult
depends (i.e. relative light position to the scene volume) do not changeenily the
computation by the light simulator is done within a few secdrmtipending on sampling
rate and complexity of the scene.

In texture T1, we store a spatially varying refractive index field and theespond-
ing gradients. The refractive indices are pre-smoothed before tligegta are com-
puted, as already described in Sect. 3.1. To render a dispersioh(sfecSect. 3.2.7),
we can either use a multi-pass approach or an array of refractive tegexes. This
poses an advantage for simulation speed but requires considerablyig@msanemory.

The spatially varying attenuation data texture T2 stores the color-specificatien
factor o, for each voxel. Thus, the radiance of the light ray is attenuated conshuou
along its path through the scene volume. Emission data T5 contributes to thealight r
by an additive radiancé. () to each of the RGB channels.

The generality of our algorithm allows us to render opaque objects, by tisen
opague indicators T6 as input, which trigger opaque behavior throughiitheperator;
used in Eq. 5.4. The coefficient has no direct correspondence in thye ifoemation
model, as it is only a technical implementation issue, providing us with the possibility
to stop the viewing ray propagation through the scene based on speaiffiitiaos. The
color of the corresponding ray is thus computed by the Fresnel reflemti@nsurface
and the opaque color of the boundary point. One use for the opaquéstéomender
opaque objects inside a refractive material (e.g. amber with a trapped imsee).

The reflection texture T7 is used to define special material properties doreth
flection on a boundary. Combined with a proper boundary indicator it camsée to
simulate a BRDF and thus to compute thg(Z,) term. The boundary indicator is a
discrete version of Dirac’s delt§). We compute it by voxelizing the mesh or use the
gradient strength of the refractive index gradients.

Finally the auxiliary data T8 contains supplementary, spatially varying informatio
(e.g. scattering strengthas in Eq. 3.5, anisotropy factgrfrom Eq. 5.4). For scattering
simulation, we are using the Henyey-Greenstein phase function as eésesarilsect.
3.2.4.

We are using 16 bit floating point 3D volume textures to store scene infornsafion
render a refractive object @28 voxels, we require up t8-1283-4-2 = 134MB of video
memory for an object if all eight input textures are used. This amount of mecaorbe

currently about 8-12 seconds per frame (see Chapter 7)

48

Chapter 6. Implementation

reduced for particular objects when some data is not required for prepéering. For
example, a glass object does not require any opaque information. lRagsinizations
for memory storage (e.g. octree textures [BD02]) can be used, batgpdisadvantage
for rendering speed.

The volume data is generated either by an implicit function or created by vioxgliz
a mesh (see e.g. the Stanford bunny example). The advantage of usist) toreecate
volumetric data is that we can use it pre®xy geometrysee Sect. 6.3.1). This reduces
the number of viewing rays that need to be propagated through the sulensev

6.2 Light Simulator

In Chapter 4 we described the theory behind wavefront propagathanlight simulator,
presented in [IZT07] and utilized for our approach, uses this wavefront theory to sim-
ulate adaptive wavefront propagation. The background of the impleti@ntan also
be found in Chapter 4, section 4.2.2.

A light simulator run can be subdivided into the following steps

- Initialization
- Wavefront propagation

- update wavefront patches
- wavefront voxelization

- tessellation/undersampling analysis
- Write output

All computations required during the propagation step are performed oG Rhe
To do this, the light simulator implementsparticle systentompletely on the graphics
processor. The difference to a standard particle system is that thdgsadie packed
into a group of four neighboring particles, each representing oneecofra wavefront
patch. The light simulator works on a list of patches. All the properties op#ieh
particles (position, direction and irradiance) are stored in dynamicallyiggptextures.

6.2.1 Initialization

As already mentioned, the wavefront is subdivided into wavefront patehch contain-
ing four neighboring particles. The shape of the initialized wavefroneddg on the

2similar definition can be found in Sect. 4.2.3

49

Chapter 6. Implementation

light source properties. Directional light produces a planar waveframere all corre-
sponding light rays are parallel. A point light source, however, hatargcal wavefront.
To overcome singularity problems, a small vatuier the initial radius is used.

The initial differential irradiance (see Sect. 4.2.4) for each wavefpatth is com-
puted through the irradiance of the light source. For a directional lighitsothe patch’s
initial irradiances are equal. However, for a point light source, thelierece per patch
is based on the intensity law, Eq. 4.16. By assuming the patches are atia distence
e away from the light source we avoid a division by zero area.

6.2.2 Wavefront patch propagation

The wavefront is implicitly propagated through its defining patches. Theggation of
the wavefront corners is done using Eqgs. 4.12 and 4.13 described$ethed.2.3. We
apply the discrete version

- L At
Tig1 = T + —5 W (6.1)
n
and
At -
Wit1 = W; + ?Vn (6.2)

of Eqg. 4.12 and Eq. 4.13 to each corner particle of a wavefront patch.

During the update step, the light simulator also re-computes the differensidi-irr
ance carried by each patch. It is computed by Eq. 4.16, presentedtin&s2d, and
depends on the surface area spanned by the corners of the waygeftch. Because the
light simulator is working on a patch list, all the required computations can lerperd
locally. This enables an optimal implementation on the GPU.

6.2.3 Voxelization of wavefront patches

During the propagation of the wavefront patches, the light simulator prtsttioeir con-
tribution into the 3D volume, i.e. it stores the differential irradiance valuegtamtbcal
light directions inside a voxel.

Unfortunately, current graphics hardware does not supportererglinto 3D vol-
umes (textures). Therefore another voxelization approach is regilieedooint prim-
itives and the concept dflat 3D texturesintroduced by Harris et al. [HBSLO03]. Flat
3D textures are also calleatlas textures They map texture slices, cut along the z-
direction, into a 2D texture. To access any voxel stored in a flat volumeréx@umap-

50

Chapter 6. Implementation

ping f : T2 — T? is applied to the original, three dimensional texel coordinates or vice
versa for writing to a Flat 3D texture.

Point primitives are used to perform the voxelization process. The lightlaioru
sends as many point primitives as there are rays to the graphics pipelich. p&iat
represents the center of one wavefront patch and thus is equivaléna fight ray rep-
resented by the propagation direction of a wavefront patch. The restdttiance value
and light direction, are then rendered into the output textures.

Through statistical analysis of the scenes we found, that it is sufficiemtlyostore
the highest energy which passes through a voxel. We thus limit our commstatio
one contribution per voxel. Possible future implementations could store moreiiea
light's contribution into a voxel with multiple simulation passes, yielding a more accu-
rate computation of the current image formation model.

6.2.4 Patch list analysis

After each update step the patch list is analyzed. This analysis is requipFdvent
undersampling, as outlined in Sect. 4.2.3, and to remove patches which wilsnatly
contribute to the computed results.

Undersampling is prevented by performinglimergence tessellatiowhen a wave-
front patch becomes larger than a voxel. To tessellate a patch, it is divitkeéour
smaller ones (see Fig. 4.3). The new patches are then added to the patnlist to
advance the simulation.

Some patches do not visually contribute to the results anymore. Thus thelnare
inated using amnergy thresholdTermination usually happens after loss of energy due
to attenuation or when a patch has been tessellated too many times. Patchdsavigch
the volume of interest are terminated, since we assume that they can naerehe
volume.

As mentioned in [BW99], the physical model of ray optics breaks downaatew
front singularities, resulting in an infinite energy result at catastrophit@oSuch sin-
gularities can produce non-physical caustics. They are detectechbyirgrg the patch
orientation with respect to its propagation direction. In case, the orientdtanges, the
corresponding patch is eliminated. Another postulation of the waveframagation
problem may help, in future work, to prevent these singularities.

The termination repeats until no patches remain. Figure 6.1 shows a wavaiop-
agating through a wine glass. The irradiance values, computed duringdla¢eustep,
are visualized as colors previewing the beautiful caustics in and aroarabjéct.

During patch list termination or tessellation, a data compaction or expansior on th

51

Chapter 6. Implementation

() (b)

Figure 6.1: (a) The refractive index volume of the glass is approacheddpherical
wavefront from the right. The adaptive tessellation of the wavefront s\atgble. (b)
When it passes through the object, beautiful caustic patterns appear iradmimce
distribution.

GPU is performed. This is a non-trivial task, since a GPU is not desigrieahidie lists.
To solve this problem on Shader Model 3.0 hardware, the data compaldtgimnittamn
presented by Ziegler [ZTTSO06] is utilized. It works on a mipmap-like datagira
to construct a list of retained data entries (in our case: patches) withalvimg the
CPU. An extension of the algorithm is used to handle data expansion (irasel jgatch
tessellation) [IZT07].

6.3 View renderer

Our view renderer implementation follows the rules defined in the image formadmn s
tion in the previous chapter. Having the output of the light simulator availableame
render arbitrary views of the scene including complex refractive objé@tis view ren-
derer uses the equations derived in Sect. 4.1.2 to propagate viewinthraygh the
scene volume.

We are using a fastolume raycastingpproach based on Egs. 4.8 and 4.9, and
their discrete versions, Eqs. 5.11 and 5.12. As already mentioned, th8oggusup-
port advanced refractive effects, e.g. total reflection, ray bendwtgout performing
explicit ray-surface intersections. The radiance of the viewing rayrigpeied using the
discretized image formation model, Sect. 5.2.

Volume raycasting is an image-based volume rendering technique. The n@din go
is to render 2D images from 3D data sets. Volume raycasting producdts refsuery
high quality. Combined with the derived rendering equation it is fast entugénder
refractive objects in real-time. The basic algorithm for volume raycastinged in our
approach, has the following steps:

3GPUs with Shader Model 4.0 and above can perform list handling usiometry shaders, but would
require a considerable, non-backward-compatible redesign of qlemnentation.

52

Chapter 6. Implementation

Figure 6.2: Basic volume ray casting of a refractive object. For each q@iitke image
plane, a viewing ray is propagated through the volume. The samples aolated
and composed to produce the resulting pixel value.

- Ray casting For each pixel in the resulting image, a viewing ray is cast through
the volume data. It is common to use a bounding geometry for the volume to
define if and where viewing rays are issued.

- Sampling: The volume data is sampled on equidistant sampling points along the
viewing ray trajectory. Since the volume is not aligned with the light trajectory,
samples have to be interpolated (i.e. by trilinear interpolatasrihe surrounding
voxels) to acquire correct, approximated values for samples lying inbetwee

- Local computation: The samples are used to compute all local data based on the
rendering equation.

- Compositing: All the samples are composed into a resulting pixel color. The
composition is derived directly from the rendering equation.

In our case the last three steps are looped while the viewing ray remains in the
volume.

6.3.1 Ray casting

For each pixel of the final image, we cast viewing rays through the sedome. This
is done by using a bounding geometry, gkaxy geometrylIn the simplest case, it is a
cube

“for 3D textures interpolation is performed in hardware, for flat 3D tegyfD atlas texture) we per-
form the interpolation in software

53

Chapter 6. Implementation

(b)

Figure 6.3: Refractive object and its proxy geometry. (a) Cube/Boxbasiading prim-
itive. (b) Use of a sphere mesh as bounding primitive.

To optimize rendering, we are using a mesh as a proxy geometry for partidula
jects (e.g. the sphere). It follows that only the viewing rays, which aopamgated
through the inner of the surrounded medium, contribute to the renderinstefs
can be seen in Fig. 6.3, there is a lot of free space around the sphiete ddes not
contribute to the results at all.

Our view render is able to provide a free view of the refractive object réhndered
object can be seamlessly included into a mesh-based environment. Usiogyagpr
ometry, we apply an object matrix/ describing the rotation, translation and uniform
scaling of the refractive object. Based on proper matrix manipulation weedarm
a coordinate space "switching” for viewing rays propagated througkdhee volume,
i.e. we transform the current sampling position into the local object spaite afcene
volume. This is done by multiplying the ray positiahwith the inverse object matrix
M~!. The computed point’ = M ! - # is then used to sample the volume data.

We are using Shader Model 3.0 hardware to render the refractivetebjeA
fragment shader is then applied to the proxy geometry, which implements the
pseudo code for evaluating the image formation presented in Sect. 5.2. Tak-
ing into account correct transformation of the gradient and position rectbe
pseudo shader code to render the refractive objects in real-time lookghiike

54

Chapter 6. Implementation

Zo = fragment position in world space
wWop = normalize(Zy — eyePosition)
while in volume do

=M1 T

sample volume data at

Gl = (MY

computeL.., o

Liy1(c) = Li(c) 4+ Lo(Z,0)d (¢, ¢)

Fip1 = i + 220

wi+1 =; + AS%TL/

1=1+1

Lz'-i—l(c) = LZ(C) + nga/(tow C>Tfresnel

After the shader has finished volume traversal we use the viewing rastidivgo
sample the background terf,. The sampling is performed with a simple lookup into
a dynamic environment map. The term is multiplied with the combined transmission
termTy,.sner Of the fresnel equations and the attenuation factor. The transmission term
is needed since only a part of the initial light energy is completely propadiatedgh
the volume. This is due to Fresnel reflections on the boundaries as d@ssorilsect.
3.25and 5.1.3.

The algorithm presented in the previous chapters and the powerful imagatfon
model, combined with the view renderer implementation, can handle arbitraryFBRD
models. However for simple glass objects, which are close to being pesflmttors, a
good approximation of the first reflection is visually sufficient. Therefaesuse simple
environment lookups to simulate reflections on the object boundaries ellbeted rays
are not cast back through the volume.

6.4 Conclusion

This chapter presented a sketch of our implementation. Fig. 6.4 illustrates tkhitomo
of our rendering approach. In the first section, we have shown the ohgta, which
consists of three dimensional volume textures storing all the information wkfoea
proper light simulation and rendering process.

55

Chapter 6. Implementation

light position viewpoint

(" Renderer N Output view

light positlion
Light DR
Simulator

Input Data

Set of
3D textures |

View
Renderer

AN %

Figure 6.4: Work-flow of our rendering system.

In the second section, we presented the light simulator. The wavefrtott st in
the simulator is administrated completely on the GPU without utilizing the geometry
shaders, allowing the use of Shader Model 3.0 hardware. The simulatiofr¢iquéred
to propagate the wavefront through a scene, depends on the voluohgticesand re-
fractive object complexity.

In the last section we have presented a pseudo implementation of our vidgreen
The renderer casts viewing rays (rays of sight) through the scenmgand approxi-
mately evaluates the image formation model, Eq. 5.3.

All the color computations in the view renderer are performed in high dynanigs,
i.e. there is no clamping performed and floating point is used. The resultheme
mapped to the presentable display range by a tone-mapping approacrkas30g].
The results and the statistics about the rendering speed are presentederttbhapter.

A full shader code implementation of the pseudo code rendering algorithrolislad
in Appendix C.

56

CHAPTERY

RESULTS

The previous chapters described the complete rendering pipeline fatgmrithm. We
have shown how to simulate different optical effects and presenteceaaiamd efficient
image formation model, Sect. 5, for the realistic rendering of refractivectsbjesing a
volumetric object representation.

In this chapter, we present results achievable by our approach.nbiegeon the
scene complexity and the count of rendered refractive objects, wanchitiable ren-
dering performance, i.e. at least at interactive frame rates of abeih FPS.

Unfortunately, we are not always capable of providing a comparison gvibind
truth results. Currently, we are not handling nearby geometry corrgetiducing re-
fraction artifacts for geometry close to the refractive object. In the futinese cases
could be handled by combining any suitable approach which enables usmputma
correct environment look-up with respect to near-by geometry. Fopuhgose of pro-
viding comparison results to ground truth, we replaced the environment rokpddy
a ray-plane intersection in the fragment shader (see Fig. 7.1). Mord@omgarby ge-
ometry can be rendered accurately using the approach of Hu and Qb7]HRote that
due to the volumetric discretization and refractive index field smoothing prigradi-
ent computation, we are not able to produce results exactly matching aohanetric
rendering approach.

Our renderer is capable of computing Fresnel effects and anisotrogitesng
phase functions on-the-fly. With the help of spatially varying, as well & ohannel-
dependent attenuation, beautifully colored objects can be reproduamissi&n and
dispersion effects can be simulated by providing one separate reéramdiex field for
each of the color components.

To render our results, we utilized nVidia's GeForce 8800 GTX with 768 Nddeo
memory. Our scene data is stored 82 volumes, with up to eight volumetric textures,
as mentioned in Sect. 6.1. As a CPU we are using a Dual Core AMD Opteron with
2.6 GHz. However, this is mostly irrelevant as most computational work i®peed
completely on the GPU.

Rendering performance depends on the complexity of the rendereattiedr ob-
jects and on the view resolution, since this affects the number of rays beshfyem the
viewpoint through the scene volume. We obtain a suitable real-time perfoenudras
frames per second for almost all of our objects rendered at 800x@@lution. For the

57

Chapter 7. Results

-
Y 4 A N
’-.-“

@)

Figure 7.1: Comparison between a ray-traced image rendered with thst&®re of
Vision raytracer (POV-Ray) (a) and our algorithm (b). The diffeesim the refraction
and shadow size as well as the slightly displaced caustic pattern are duedihsof

the refractive index field.

light simulation step, which is required for each relative movement betweershgince
and refractive object, the algorithm requires 8-12 seconds to re-derttpilight distri-
bution inside the volume of interest. For the wine-glass scene, containingiraatad
light source, we spent around 90 minutes to simulate the light distribution domner
600 frames.

7.1 Objects

For the rendered result sequences we are using up to five differeattive objects
in several environments. The objects visualize different combinationseobpiical
effects that were presented in the previous chapters. A museum soetaéns five
different refractive objects, all of them rendered simultaneously. rEigL2 shows a
glass block and a wine glass presented in this environment. The environmapatfor
the background term (see Chapter 5) are stored in a cube map textae arheither
created on-the-fly for each of the objects (i.e. rendering from the ceotat of the
object), or we utilize an environment map rendered from the view point (eeeca
position).

The SIGGRAPH logo glass object, shown in Figure 7.2 (a), demonstratésttifal
reproduction of spatially varying refraction and attenuation behavioritiqular close
to the logo symbol and the text. On the boundary of the object, total reflectiohe
observed.

The solid rounded cube, Fig. 7.3(a), is composed of glass layers widhetffchar-
acteristics. The object also shows a combination of varying refractiveds@nd differ-

58

Chapter 7. Results

ent attenuation factors. Sparkles are visible inside the object, caused bgitotropic
scattering in its interior. Focusing of light in the glass leads to nice volume caustic

A simple glass sphere in Figure 7.4 (a) rendered into a captured real-evildn-
ment demonstrates similar effects. Additionally, it contains a slight emissiveauenp,
which yields a fluorescent structure in the center of the sphere.

A glass filled with red wine is shown in Figure 7.4(b) and in Figure 7.2(b). érfitist
case, the glass is illuminated with a directional light source that causesdchkaustics
on the table. In the second case, the glass is lit from the bottom. Howeeecaomot
see any illumination, because of the missing scattering term. Neverthele ppeatiag
reflection and complex refraction effects result in a realistic impressioreasitfect.

An example rendering of objects inside scattering participating media carbérse
Figure 7.3(b). The glass bunny in a showing case filled with anisotropicziyesing

smoke seems to be made of amber with black embeddings. The look of the engizeddin

excellently shows the spatially varying attenuation possibilities of our algorithine T
glass bunny also anisotropically scatters light in its interior. Please note thagtiety

of realistic effects is rendered in real-time, in particular the volume caustickeiasnd

outside the object, the glares, the caustics, shadows in the smoke, antlietttéore on
the surface.

Using transparency sorting, we can render objects one after andtmisrway, the
rendered refractive objects can be seen through other compania@s geg. Fig. 7.2
(a)). This enables a proper integration of volumetric objects into a triangla ames-
ronment.

59

Chapter 7. Results

7.2 Results

All screenshots are taken from a real-time FX-demo created during thecprvideo of
this demo can be downloadedtdtt p: / / www. npi - i nf . npg. de/ resour ces/
Ei konal Renderi ng/

@) (b)

Figure 7.2: (a) Glass block with embedded SIGGRAPH logo made up of vargfrac-
tion and attenuation materials, 14.7 FPS, (5 objects in scene). Note theesugflec-
tions and the total reflections within, as well as the rounded cube being isiblegh
the glass block. (b) Complex refraction patterns in the glass, 10.3 FP®jd&toin
scene).

(b)

Figure 7.3: (a) Rounded cube composed of three differently coloreédiifierently re-
fracting kinds of glass, showing scattering effects and caustics in its intério FPS.
(b) Stanford bunny [sta] with spatially varying attenuation, leading to the issgoa of
an amber-like bunny with black embeddings. Since the object is illuminated findleru
neath, colored volume caustics and shadows are visible in the anisotrogicatilgring
smoke and glass, 13 FPS. — Note that there are 5 objects rendered siougtgne

60

Chapter 7. Results

(b)

Figure 7.4: (a) Colored sphere rendered into an HDR environment meywjrgy slight
emission in addition to all other effects, at 26.2 FPS. (c) A screenshowirieglass
scene. The time to compute the light distribution was around 7 seconds. The time
required to render the object is around 0.04 seconds/25 FPS.

FPS: 152 b &l . FPS: 108

(@) (b)

Figure 7.5: (a) Scene showing up to 9 objects simultaneously. The bigesipttae mid-

dle has a resolution df283 voxels, while the small spheres surrounding it are composed
of only 323 voxels. The rendering speed in this scene varies between 9 FPS (véhen th
big sphere fills out the complete viewport) and 60 FPS (whenever only tHesphares

are visible). Frame rate of the screenshot is 15.2 FPS. (b) A scrednsimthe mu-
seum scene, showing all refractive objects simultaneously . The objdtbstevarious
optical effects. Their resolution K283 voxels, with up to 6 volume data textures for
each object. The rendering speed is 10.8 FPS.

61

CHAPTERS8

CONCLUSIONS& FUTURE WORK —

In this thesis we have presented a powerful algorithm for the realistieramdof re-
fractive objects. The algorithm is based on a continuous, volumetricgepiaion of
object data. We have used the eikonal equation, the main postulate of geapéts,
to derive a physically motivated ray equation.

We divided our approach into two stages. In the first stage, we computedhe
diance distribution in the scene volume using a light simulator. The simulator utilizes
the derived ray equations to propagate a light wavefront, originatindighiasource,
through the scene. Using the intensity law of geometric optics and absorptiperpes
of the object, we are able to compute the irradiance distribution in the sceaecoi
putation time depends on the complexity and resolution of the given volumetric data
and is not yet a real-time operation. However an efficient implementation oG Re
provides us with update times of typically as 10 seconds. For static scehess the
light source does not change relatively to the lit, refractive object, eerlly required to
computed the irradiance data once, giving the possibility to implement very igiypges
results in real-time.

We are currently supporting a directional and a point light source. Memwmore
complex light sources can be implemented within our approach. This eithéres@
suitable, single wavefront representation or multiple wavefronts candzb(us. multi-
directional light source). A propagation of multiple wavefronts is perforradnulti-
pass simulation.

The data computed by the light simulator is used in the view renderer to efficiently
combine the results into a beautiful scene rendering. Our view rendeaikrages a
slightly changed volumetric rendering equation to compute the radiance dhgiesys
that are cast through the volumetric scene data. A powerful, physicallyatediimage
formation model enables us to render complex volumetric objects with arbitrainy v
ing refractive index, surface effects with arbitrary BRDFs, and viapgendent single-
scattering effects. More advanced effects, described in this thesisptained at very
small additional cost. Furthermore, our view renderer is capable oergmgdvolume
caustics and realisticly rendering the appearance of transparentsoinjex scattering
participating medium, such as smoke.

Due to the physical nature of the used equations, our method enablesvatuate
complex light paths, both from the object towards the viewer and from thedmirce

63

Chapter 8. Conclusions & Future Work

towards the object, conveniently using the same mathematical framework.

Future work, based on this approach, will focus on increasing theergngper-
formance through optimization of the consumed data storage in the view eender
This could be performed by using data-organization structures like sabregher ap-
proaches, helping us to decrease the required video memory. Possiblmenp&ons
of non-constant step sizes during ray casting, based on distancitnasnscould also
contribute to increase the rendering performance. Furthermore we Vikellih study
state-of-the-art methods for rendering of nearby geometry. This wogdove the at-
tractiveness of volumetric representations for complex refractive tshjesabling their
seamless integration into a standard mesh-based environment. A propénaionbof
opacity and reflection terms together with knowledge of a geometry outside aftiac-
tive object, would allow the combination of volumetric objects with mesh-basewsgce
Finally, an extension to optical anisotropic materials (e.g. crystals) wouldaserthe
generality of our approach, see Appendix A for a theoretical discussio

We would like to finish this thesis with the same words that it began with: "In the
beginning ... there was light”. The computer graphics research evoleesaptd pace.
The border between reality and a virtual environment starts to vanishislmtrk we
have tried to get a step closer to this goal. Future works will only improve tHéygaad
performance of recreating the real world in virtual environments. Heweve should
never forget how to distinguish the two, since one is the world we live in.

64

APPENDIXA

ANISOTROPIC MATERIALS

In this chapter we present a method of propagating light rays throughpticaly
anisotropic material In contrast to opticallysotropic materials the properties of such
materials depend on the direction of light propagation. The equationgdéniyprevious
chapters, do not hold anymore. Nevertheless, some additional cHarayegramework
enable a physically motived rendering of even these materials.

The theory of anisotropic materials is very complex (see Born and Wolf [8)V9
We do not handle its backgrounds, but will try to present simple definitindgeovide
a way on how to include them into our framework.

Possible examples of anisotropic materials can be found in crystals. Alds/sta
solid in which the atoms, molecules or irons are packed into a regular strhciere
a repeating patterns of the structure in all three spatial dimensions. Toificsfield
of optics handling anisotropic materials is also calgdics of crystalor just crystal
optics

The consequences of the optical anisotropic structure of a medium ispéeaniu
effects (e.g. birefringence, trirefringence, polarization effects @ndcal refraction)
which can not properly be handled by an isotropic object representation

Because of the complexity of light behavior inside anisotropic materials, ihenty
a small amount of computer graphics research in this area. Wolff andri<ien§\WK90]
were the first attempting to include polarization effects in ray tracing. Tdvaen et al.
[TTW94] show some details on the implementation of the birefringence pheneameno
Wilkie et al. [WTPO1] present a way of including polarization into renderimgvever
they do not handle refractive objects at all. Sun et al.[SFDOOQ] preseaihple way
of rendering diamonds, but do not handle complex effects like birefricggeGuy and
Soler [GS04] show an interactive implementation of gemstone rendering wighnae
pressive results. They handle the double refraction phenomenorl aswe dispersion
effect including total (internal) reflections inside of gemstones. Due todhgplexity
of ray propagation computations inside an anisotropic medium they apply blstdfa
proximation, with a minimal difference to correct simulation.

lsome crystals, e.g. liquid crystals, adopt anisotropy temporarily threxigrnal forces, e.g. an electric
field

65

Appendix A. Anisotropic materials

Figure A.1: A birefringence crystal (calcite) showing the double réivawmf the light.

A.1 Birefringence

Birefringence, also calledouble refraction appears iruniaxiaf anisotropic refractive
objects, e.g. crystals. A circular or elliptical polarized light ray enterirdhsumaterial
separates into two sub-rays: thelinary ray (o-ray) and theextraordinary ray(e-ray).
The rays become linearly polarized in orthogonal directions, i.e. theiripatamn vec-
tors are orthogonal (Fig. A.2) (the effect wirefringenceappears in opticallypiaxial
materials and is not handled in this work).

The magnitude of birefringence is defined as
An = n. — ng,

wheren, andn. are the refractive indices for polarizations perpendicular (ordinary)
and parallel (extraordinary) to the axis of anisotropy. Therefore ¢fractive indices
correspond to both rays, created during the entering event, resdecivAn < 0, then

the material isiegativelyuniaxial (e.g. feldspar), ikn > 0, then it ispositivelyuniaxial
(e.g. quartz). IfAn = 0, then the material is optically isotropic (e.g. glass).

Ordinary rays lie in the plane of incidence and obey Snell's law. TheyJeglzs
if they were traveling through an isotropic material [BW99]. This enablet wpply
the previous ray propagation equations (4.8 and 4.9), to propagatgs through the
refracted object. Thus we can apply the same strategy as for isotropidatsater the
refractive index field of am-ray, yielding an inhomogeneous anisotropic material with
respect to the-rays.e-rays, however, require a special treatment.

2one optical axis; the definition of optical axis can be found in [BW99].

66

Appendix A. Anisotropic materials

n (Normal)

a
Incident y (optical axis)
wave E

Isotropic medium

o Df

L
/ / Extraordinary

IN/D(Z wave E¢
f N Q R st

g 0
Sty

Uniaxial anisotropic
medium

Ordinary wave E? //%\

Figure A.2: Formation of an ordinary and extraordinary ray when an émtiday en-
counters an anisotropic medium [GS04].

A.2 e-Ray propagation in uniaxial crystals

First we definei as theoptical axis a is the direction in which each of the sub-rays
experience the same refractive index (Fig. A.2). It can correlate withythemetry axis
of the crystal. It comprises one of the properties of an anisotropic mediumu-ray

is perpendicularly polarized with respect to the optical axisz-aay, however, parallel.
We further defing as the angle between the optical aXisand the wave propagation
directions (i.e. cos § = %)

While the energy propagation direction for an ordinary ray is parallel to #gew
direction, for an extraordinary ray this is not the case. The propagditiection of are-
ray is not parallel to the wave normal direction. Fig. A.3 illustrates the cporedences
between wave propagation directiQ}Se = n.(0)s. and the energy or ray propagation
directiont,, which is relevant for our purpose. However, as shown in [BW9% wave
directions of both rays still obey the laws of refraction (also known as Siall’). Thus,
to propagate an—ray through an inhomogeneous, anisotropic medium, we have to find
a mappingf(s;) = t. to be able to compute the ray vector from the wave vector.

Born and Wolf proposed a formula to bring vectgiinto a relation withs; :

- 20,2 _ 52
t_l;: oK <U§+1M>a(k:xay>z)v (Al)

2 2
VpUp Vg — Vg

wherew, is the phase velocityin the direction ofs) and is defined as, = -, v, is

67

Appendix A. Anisotropic materials

\Y
por™®?
wavelength wav®

A

P propagation direction
or ray path

Figure A.3: The electric field of aa-ray is not perpendicular to the wave propagation
direction. The consequence is that the energy propagation and vwapaggation vectors
are not parallel, i.ez,)t s;. (Note that this figure has no directly verifiable physical
significance.)

the velocity of energy transport oay velocitywith v, = v, - §anduwy, is aprincipal
velocity of propagatioh and is defined as;, = \/Ika for everyk = (z,y,2). The
principal velocities are constant and can be pre-computed based dielinetric tensor

e and thepermeability constant*. Both values are properties of the refractive medium
and can vary spatially to simulate an inhomogeneous, anisotropic substagcliqiid
crystal).

We can see in Eq. A.1 that the denominatbr— v,% may vanish. This corresponds
to so calledconical refraction where a particular wave directio@scorresponds to an
infinite number of ray directions We will not take care of this effect, since the required
handling for this special case can not easily be implemented on the GPU.

Typically, there are two possible solutions for the phase velagitydorn and Wolf
have shown that both velocities can be computed as following:

c
Vo = —
Mo

1

£)2 sin? @

€2 .2
= _— S 0
Ve ((no) cos +(ne
For the special cage= 0, leadings || @, we do not get the effect of double refrac-

tion, since the both ray propagation directispsndt. are also parallel.

3see Born and Wolf[BW99] for more details eny anduvy,
411 can be set to 1 to simulate a non-magnetic medium

68

Appendix A. Anisotropic materials

A.2.1 Refraction and Internal reflection of e-rays

First let us reconsider the dielectric tensoirom the previous section. The dielectric
tensor is a constant for a given material and defined as:

Exx Eaxy Exz
E=| &yz Eyy Eyz

€z Ezy Ezz

Since the dielectric tensor is symmetric ([BW99]), we can rewrite the tenddiifie
the simpler form based on proper mathematical reformulations:

€1 0 0
g = 0 £9 0
0 0 €3

The dielectric displacement vectdr and the electric field=> are related by the tensor
£
D =¢E.

In an optically isotropic medium the valuesobre equale; = €2 = £3. Hence we
see that the dielectric displacement vector and the electric field are collineat, =
const. The consequence is that the ray direction and the wave directions|kneaw
too.

However in an uniaxial anisotropic medium, we have two non-equal casstan=
o # e3. This leads taD Ji E, which results in a non-parallel wave normal and ray
vector (Fig. A.3), sinc& L. D andi L E.

As already mentioned in the previous section, Born and Wolf proposed pinggf
to bring both vectors in relation. Beyerle and McDermid [BM98] have shamother

relation between them: .
ES

t= (A.2)

| es']
This is also clear, because the corresponding unit vegtarsii experience the same
transformation as the field vectafsandE.
Before we can use this relation, we must first find a suitable way to prapéga
wave normal vecto¥ of ane-ray in an uniaxial anisotropic medium.
Let us first define the orthonormptincipal systen€ © of the crystal through their

Ssee Maxwell's equations [BW99]
Sitis spanned by the wavepropagation vectand the optical axig

69

Appendix A. Anisotropic materials

orthonormal vectorsgei, €3, €3 }:

w|

X

QL

—

el =

—

o §x (axs)
[axs] e @xal
Now we use the proposal by Beyerle and McDermid [BM98] to build a mapping
from £ to a non-orthonormal coordinate systéfwith the help of arbitrarily orthonor-
mal basis vectorge! = (1,0,0)7, ¢, = (0,1,0)7, ¢, = (0,0,1)} (e.g. world space

or volume space base vectors):

(A.3)

21

€3 =

|

X

QL

[1
— 0 0
Ne
1 T
y=0| 0 — 0 |O
Te
0O 0 —
L 7/‘LO_
with
P Y A S
61'61 62‘82 63‘63
O=| éi-€¢ ér-e, éz-¢€}

I Y A Y
“e] €3-€5 €3-€3

[aigl)

e

This mapping now allows us to transform the wave specific directions fracon
ordinate system to another. Beyerle and McDermid have shown that thisainaration
remaps theay normalsurfacé in £ into a spherical shape iff. Thus the ray vector
teg corresponds now to the wave normal vediar £.

In other words, are-ray propagating through th& space behaves as if it was in
a "pseudo-isotropic” medium. This is based on the fact that the wave neeotdrs
obeys the refraction/reflection laws with respect to the angle deperefesttive index
n(#). We can now define the following mappings, as made by Beyerle and McDermid
for the wave normal vectot and the ray propagation vector

- 2l
s = —
| v |

5

F= 12
| vs' |

As we can see in [BM98] the-ray traveling in£’ coordinate space obeys Snell's
law. However, since the ray is propagatedinve have to take care of the normals on

"a detailed definition of the ray normal surface is given in [BW99], p®.79

70

Appendix A. Anisotropic materials

the material boundaries. Based on the mapping opetatoe map a surface normal
into £ with: . X
o m
n = ——-.
[v |
Summarizing this we deduce: array propagated through an anisotropic material
in coordinate systeri’, behaves in the same way as@&may that is propagated if.
Hence we can state similar first order differential equations as in Secttd dr@pagate
ane-ray:

— =y (A.4)

—— = Von, (A.5)

wheren’ is the corresponding angle dependent refractive indexﬁ'aéntt R? denotes
the gradient of refractive index functioti(z, y, 2, 0) € R for a fixedé. For an inhomo-
geneous, anisotropic material we define the refractive index "expeigrby ane-ray
asn’ =nl(z,y,2,0) =ny(z,y,2).

Based on these definitions we can now simulate light propagation of an rehtraiy
ray in inhomogeneous uniaxial anisotropic medium in an elegant way. Tduiegit
function is computed in the same way as shown in Sect. 3.1 and stored as aldp-lo
texturé.

A.3 Absorption/Attenuation

As we have already mentioned in Sect. 3.2.3, the energy of a light ray cattelneiated
while traveling through a medium. We have defined an attenuation fadiased on the
intensity law. For anisotropic materials, Born and Wolf [BW99] proposedftwmulas
to compute the absorbance of the ordinary and extraordinary rayss&\eoth of them
to define the attenuation functien as in Sect. 3.2.3,

t o

OéO(t, C) = LU e Jo oa(c(s))ds

Oée(t)= Lo- o I <og(c(s)) cos? 9+a§(c(s))(2—2)2 sin? 9) ds

of an o-ray ande-ray, respectively.c® and ¢¢ are characteristical, spatially varying
material constants, artdis the angle betweesi anda, as mentioned previously.
Since the absorbance of afray depends on its direction, the color will be differ-

8the values can also be pre-smoothed by a four dimensional smootteratap

71

Appendix A. Anisotropic materials

ent. This phenomenon is known pkeochroism These approximations of attenuation
for each of the refracted rays, enables us to compute the radiance \aéttiag rays
traveling through an anisotropic medium.

Conclusion

In this chapter we presented a way of propagating light through an optarziptropic
medium. We specified the propagation only for uniaxial (one optical axis)jan&thce

the propagation of an ordinary ray follows the same rule of refraction @sotnopic
media, we can use the equations for isotropic materials as presented in fiterCha
However, an extraordinary ray behaves differently. Based on alir@de space trans-
formation we were able to tackle the problemesfay propagation. We have shown
that we can simulate theray trajectory inside an inhomogeneous, optically anisotropic
material with the same equations as for isotropic objects.

We have presented the computation of attenuation functions for both ragsabF
sorbance for the-ray depends on its polarization, which gives rise to the phenomenon
of pleochroism.

The computations for ray propagation inside an anisotropic materials arecquite
plex. In future work, we would like to optimize the propagatioreafiys, and study the
practical realization of the theory presented here. We would also like tocgig algo-
rithm to simulate biaxial media and thus cover the complete set of optically aniegtrop
inhomogeneous refractive objects.

72

APPENDIXB

FORMULAE

Chapter3

e Gradient computation, Eq. 3.1

§f(l’,y,z) _ (f(l‘+1>yaz);f(l'—17y,z>7
f(xvy"i_l,Z)—f(l”y_l’Z)
2)
f(ifayaz—i-l)—f(x,y,z_l))
2

and three dimensional gauss smoothing operator, Eq. 3.2

9(w,y,2) = 67((%)2+(%)2+(%)2).

used in the Sect. 3.1 to present the computation of the gradientffi;etﬁlom the
refractive index field.

e Using the absorption law, we derived the attenuation faat@rc) to simulate
spatially varying attenuation for a light ray traveling through the scene vglume

Eq. 3.4
a(t,c)=Ly-e” Jo oe(e(s))ds

is presented in the Sect. 3.2.3.

e Henyey and Greenstein approximation of single anisotropic scatterinidanc

_ 1-g’
b= 2(1 — 2gcos @ + g2)3/2’

Eq. 3.5 is shown in Sect. 3.2.4 and allows us to render spatially varying
anisotropic scattering effects.

e EQ. 3.6
_ n;cosB; + ny cos by

~ n;cos; —ng cos by
and the relatiol” = 1 — R are used to compute the surface reflection factor based
on the Fresnel equation. The factor is used to approximate correct éghwior
during reflection at material boundaries.

73

Appendix B. Formulae

Chapterd

e The eikonal equation, Eq. 4.2
| VS |=n,

shown in the Sect. 4.1.2, corresponds to the geometric description of {hegaro
tion of a massless particle (i.e. photon) through inhomogeneous refraudier
fields. We use this equation to solve the volumetric rendering problem bwaprop
gating a light ray along the solutions of the eikonal equation.

e The ray equation of geometric optics, Eq. 4.7

i(di?) —

ds nds v

derived in the Sect. 4.1.2 from the eikonal equation describes the trgjedtar
light ray within a field of inhomogeneous refractive index values. This isithim
eguation used in the view renderer which casts the viewing rays throughéehe
volume.

e The re-parameterized ray equation, Eq. 4.14

d QdF -
n%(n E) =un

describes the propagation of wavefront particles, with four of themripg a
wavefront patch. The equation uses a parameterization with constantre@mpo
step sizes, enabling a simple implementation of a light simulator on the GPU.

e A discrete version of the intensity law (Eq. 4.16), presented in the Sect. 4.2.4

AB(£) = AEL‘A(O)A(O)

(t)
defines the way of computing the differential irradiance values for eat¢heo

wavefront patches. The computed patch energy is required to pedommect
simulation of anisotropic scattering and reflection effects.

74

Appendix B. Formulae

Chapterb

e A slightly changed volumetric rendering equation

L(c) = /Lc(f, O)a(t, c)dt + Lygo(too, €)

presented in the Sect. 5.1.2 is the main postulate of our image formation model.
We solve the discrete approximation of this equation while propagating a viewing
ray through the scene volume.

e The L, term of the rendering equation is defined as
Le(%,) = @L(7,7) + 0(Z)RL (T, 7) + Le(7,7)

and combines all the subterms needed for the realistic rendering within oue imag
formation model. The equation is presented in the Sect. 5.1.3.

e Making simplifying assumptions about the light source contribution to the rende
ing results we could derive a discrete equation for the tatgasnd L, as

S(,7) = }:p:m]

which describes spatially varying scattering, and

—»

Zﬁ“ Z,U,1;) cos 0AE,,,

defining the reflected radiance on a surface boundary, triggerectiyitac delta
functiond(Z). The termL. describes the amount of emitted energy. The equations
are defined in Sect. 5.1.4.

75

APPENDIXC

CODE LISTING

Below we are presenting the shader code, which is used in the view esridetast
the viewing rays through the scene volume. The code is written in the nVidiéds C
Graphics (Cg) language. It is supported by the Shader Model 3.0hezd

/1
/I Vertex Shader (vp20 profile)
/1
struct vertexIinputs

float4 position : POSITION;
float3 normal : NORMAL;
float4 color : COLOR;

b

struct fragmentinputs

{
float4 pos : POSITION;

/Il Position of the ray in world coordinates
float4 raylnWorld : TEXCOORD1;

/!l Position of the ray in volume coordinates
float4 raylnVolume : TEXCOORD2;

void main(
in vertexlnputs IN,
out fragmentinputs OUT,

/1 Object matrix
uniform float4x4 objMatrix,

/I Modelview—Projection matrix
uniform float4x4 modelViewProj)

/1 compute coordinates of the ray position in volume space
OUT.raylnVolume = IN.position + float4(0.5, 0.5, 0.5, 0);

I/l position of the ray in world space
OUT.raylnWorld = mul(objMatrix, IN.position);

/!l compute position in clip space
OUT.pos = mul(modelViewProj, IN.position);

/1
/I Fragment Shader (fp40 profile)
/1
struct fragmentinputs

{
float4 pos : POSITION;

/I Position of the geometry point in world coordinates
float4 raylnWorld : TEXCOORDI;

/I Position of the ray in volume coordinates
float4 raylnVolume : TEXCOORD2;

77

Appendix C. Code Listing

/1 Constants
/1
const float3 zero = float3(0,0,0);
const float3 one = float3(1,1,1);

11l
/Il Get an interpolated voxel from 2D atlas texture.
11l
float4 getVoxel(sampler2D atlasTex, float3 texCoord,

float2 sliceSize , float sliceCount, float slicePerLine)
{

/1 our slice number is this one
float slice = sliceCountx texCoord.z + 0.5;

/I now we have slice number for the both neighbors
float slicel = floor(slice);
float slice2 = ceil(slice);

/I mix factor gives us the lerp factor between two neighbayirslices
float mixfactor = frac(slice);

/1 coordinates of the first slice

float t1 = slicel / slicePerLine;

float2 slicecoordl = float2(frac(tl)« slicePerLine , floor(tl));
float2 coordl = sliceSize .xy (texCoord.xy + slicecoordl);

/!l coordinates of the second slice

float t2 = slice2 / slicePerLine;

float2 slicecoord2 = float2(frac(t2)« slicePerLine , floor(t2));
float2 coord2 = sliceSize .xyx (texCoord.xy + slicecoord2);

/I now get both values
float4 voxell = tex2D(atlasTex, coordl);
float4 voxel2 = tex2D(atlasTex, coord2);

/I now interpolate between both and return the result
return lerp(voxell, voxel2, mixfactor);

/1
/!l Rendering
/1
float4 main(

in fragmentinputs IN,

/l input volumes as 2d atlas textures
uniform sampler2D volumeTex,

uniform sampler2D volumeAttTex,

uniform sampler2D volumeAuxTex,

uniform sampler2D volumelllumTex ,

uniform sampler2D volumeDirectionTex ,
uniform sampler2D volumeEmissionTex,
uniform sampler2D volumeOpaqueDataTex,
uniform sampler2D volumeReflectionDataTex ,
uniform samplerCUBE envMap,

/I Camera position in world coordinates
uniform float3 eyePos,

/I Delta S, step size
uniform float stepSize,

/I Object matricies

uniform float4x4 objMatrix,
uniform float4x4 objMatrix! ,
uniform float4x4 objMatrixIT ,

/I Slices information of the atlas texture
uniform float2 sliceSize ,
uniform float slicePerLine ,
uniform float sliceCount,
uniform float2 texelSize ,
uniform float3 voxelSize
) : COLOR{

78

Appendix C. Code Listing

float4 vOUT;

I/l this are ray starting points in volume and in world coorddihes
float3 rayVolumePos = IN.raylnVolume;
float3 rayWorldPos = IN.raylnWorld;

/I Step through the volume/world space
float3 rayStep = stepSizex 2.0;
float3 rayWorldDir = normalize (rayWorldPos- eyePos);

/I use this vectors to iterate through the volume

float3 Ic = 0; // combined
float3 Is = 0; [// scattering
float3 Ir = 0; // reflection
float3 le = 0; // emission
float3 | 0; // final

float3 A = 0; // absborbance
float n = 1.0; // refraction index
bool blterate = true;

/I Initial fresnel reflection values
float T =1, R = 0;

bool boundary = false;

bool bOpaque = false;

float4 voxelOpaqueData = float4 (0,0,0,0);
sliceCount = sliceCount 1;

/I we iterate through the volume
while (blterate & !bOpaque)
{
/I Sample voxel data on the current position
float4 voxel = getVoxel(volumeTex, rayVolumePos,
sliceSize , sliceCount, slicePerLine);
float4 voxelAtt = getVoxel(volumeAttTex, rayVolumePos,
sliceSize , sliceCount, slicePerLine);
float4 voxelAux = getVoxel(volumeAuxTex, rayVolumePos,
sliceSize , sliceCount, slicePerLine);
float3 voxelEmission = getVoxel(volumeEmissionTex, ragMmePos,
sliceSize , sliceCount, slicePerLine).rgb;
float4 voxelReflectionData = getVoxel(volumeReflectibataTex , rayVolumePos,
sliceSize , sliceCount, slicePerLine);
float3 voxelLightDir = getVoxel(volumeDirectionTex , rajolumePos, sliceSize ,
sliceCount, slicePerLine).xyz;
float3 voxellllum = getVoxel(volumelllumTex, rayVolumefs 6 sliceSize,
sliceCount, slicePerLine).xyz;
voxelOpaqueData = getVoxel(volumeOpaqueDataTex, rayviodPos,
sliceSize , sliceCount, slicePerLine);

/I Compute anisotropy factor

float scatterStrength = voxelAux.r;

float anisotropyFactor = voxelAux.g;

float anisotropyFactorSquared = anisotropyFacteranisotropyFactor;

/! transform gradient into our system
float3 gradient = mul(float3x3 (objMatrixIT), voxel.xyz)

/!l Compute Emission factor
le = voxelEmission;

/I Compute Attenuation factor
A.rgb += rayStepx voxelAtt.xyz;

/I Compute for all incoming lights its contribution
I/l Currently we are only using one light source

Il transform light direction into our coordinate system

voxelLightDir += 0.0001; /!l add some epsilon to prevent numeric problems
float3 lightDir = mul(float3x3 (objMatrix), voxelLightDi);

lightDir = normalize (lightDir);

/I Compute anisotropic scattering term

float ft = dot(lightDir, normalize (rayWorldDir)) + anisotropydctorSquared;
ft = 1 — 2 % anisotropyFactorx ft;

Is = voxellllum % 0.5 x (1 — anisotropyFactorSquared) / (pow(ft, 1.5));

79

Appendix C. Code Listing

/I Compute new direction, position and refraction index
float3 oldPos = rayWorldPos;

rayWorldPos = rayWorldPos + (rayStep / n9 rayWorldDir;
rayWorldDir = rayWorldDir + rayStepx gradient;

n += dot(gradient, (rayWorldPos- oldPos));

/!l compute new volume position
float4 newVp = mul(objMatrixl, float4 (rayWorldPos , 1));
rayVolumePos = newVp.xyz + float3 (0.5, 0.5, 0.5);

/l save current transmission factor
float oldT = T;

/l 1f we are on a boundary; can be replaced by texture leailp
if (float(length(gradient)> 0.8) & !boundary)

{
boundary = true;
I/l check whenever opaque data is specified
bOpaque = voxelOpaqueData .>a O;
/I compute fresnel term
I/l This is only an approximation of the fresnel reflectionrte
/!l computation, which was presented in the thesis.
R =11/ pow(l + abs(dot(normalize(gradient), normalize (YagrldDir))), 2);
R = min(pow(R,3) * voxelAux.a, 1.0);
T=T=x* (1 —R);
I/l compute reflection
float3 dir = reflect(normalize(rayWorldDir), normalizegradient));
float3 reflectionColor = texCUBE(envMap, dir).rgb;
Ir = lerp(reflectionColor, voxelReflectionData.rgb reflectionColor ,
voxelReflectionData.a);
telse{
R = 0;
}

/1 if gradient is too small, so we could not be on a boundary
if (length(gradient)< 0.01) boundary = false;

/I Compute combined intensity per voxel
lc = scatterStrengthx Is + Rx Ir + le

/I Compute final integral
| += lc * exp(=A) = oldT;

/Il check if we are not outside of the volume
float3 templ = rayVolumePos zero;

float3 temp2 = rayVolumePos one;

float temp3 = dot(templ, temp2);

if (temp3< 3.0) blterate = false;

}

/I get color from environment map as if ray is coming out
float3 envColor = lerp(voxelOpaqueData.rgb, texCUBE (Eiap, rayWorldDir).rgb,
1.0 — float (bOpaque));

/I Compute resulting color
vOUT.xyz = envColor* exp(-A) = T + 1|;
vOUT.a = 1;

/I Need this here to prevent possible overflow problems
vOUT.rgb = min (vOUT.rgb, 65504);

/] return
return vOUT;

80

LIST OFFIGURES

11

1.2

2.1

2.2

2.3

3.1

3.2

3.3

3.4

Glass block with embedded SIGGRAPH logo. The complex behavior
of refraction is combined with a spatially varying attenuation inside the
letters. Note the total reflection on the block boundaries. 10

Rounded cube consisting of three different glass layers. Light dionula
is capable to compute the irradiance distribution inside the object volume
providing a nice sparkle like structures during the rendering phase. . 11

One of the first synthetic image showing caustics, refractions and-refle
tioNsS[ArVB6] e e 14

(a) Realistic refractions and caustics rendered at 2.5 frame pardseco
on 8 client machines [WBS02] (b) Caustic computed by the photon
mapping approach described in[Jen01] 15

Photon mapping computed onthe GPU by [PDG] 16

Wine glass object consisting of 128x128x128 voxels. (a) Refectiv

index field was pre-smoothed before computing the gradients. (b) No
smoothing: Glass appears blocky. Note how the smooth filtering unin-
tendedly expands the boundaries. 20

(a) A real world photo showing the refraction effect. The light rags ar

bent as they cross from water to air. (b) Volume caustics created by
propagating light particles through a glass sphere. Notice how the light
rays are being focused [Jen01]. 22

(a) Scattering occurs when light originating at the light sosazgters

on material impurities, e.g. dust particles. (b) Wine glass showing re-
fraction and attenuation. Wine attenuates green and blue components of
the light resulting inared colored fluid. 23

Black glass sphere reflecting the environment. The sphere’s material
absorbs almost the whole light energy such that only the reflection on

the surface is visible. (a) Native reflection (b) Fresnel reflection. Note

the use of fresnel equations improves the realism of the scene. 24

81

List of Figures

3.5

4.1

4.2

4.3

4.4

5.1

5.2

6.1

(a) Real world photo of dispersion phenomenon on a prism [MS] (b)
Emulated dispersion effect with a three-pass computation of color com-
ponentsred, greenandblue. 25

minimal, if the sines of the ray angles in different media are in =======
Snell’'s law; The propagation time of light from P to Q is minimal, if the

to the refractive indices. 30

2D illustration of our complex image formation scenario — due to inho-
mogeneous material distribution, light rays and viewing rays are bent on
their way through thecene volumé&. Light rays always travels orthog-

onally to the light wavefronts. Light wavefronts are the iso-surfaces of
constant travel time from the lightsource. 33

Adaptive wavefront refinement. (a) 2D illustration: the wavefront is
represented by particles (red dots) that are connected to form arvatvef

(blue lines). While advancing through the voxel volume (shown in gray)

the wavefront is tessellated such that its patches span less than a voxel.
(b) 3D illustration of the tessellation for one wavefront patch. 35

The intensity law of geometric optics (left) and its discretized version
(right) in the form of astream tubeThe product of area and differential
irradiance is constant along atube ofrays. 37

Glass spherel 283 voxels) refracting the viewing rays. (a) Refraction
only (b) Refraction combined with attenuation; red and blue light com-
ponents are attenuated, producing green colored glass. 0. 4

(a) L. becomes active on the material boundary between glass and air,

and is responsible for reflections of the environment (Fresnel reftesjtio

(b) Additionally, L and L. have become active. Scattering gives a feel-

ing of impurities inside the glass. A small blob in the center of the glass,
emitting radiance, gives an impression of phosphorescence. 2. 4

(a) The refractive index volume of the glass is approached by asisphe
wavefront from the right. The adaptive tessellation of the wavefront is

also visible. (b) When it passes through the object, beautiful caustic
patterns appear in its irradiance distribution. 52

82

List of Figures

6.2

6.3

6.4

7.1

7.2

7.3

7.4

Basic volume ray casting of a refractive object. For each pixel of the im-
age plane, a viewing ray is propagated through the volume. The samples
are interpolated and composed to produce the resulting pixel value. . . 53

Refractive object and its proxy geometry. (a) Cube/Box as a bogindin
primitive. (b) Use of a sphere mesh as bounding primitive. 54

Work-flow of our rendering system. 56

Comparison between a ray-traced image rendered with the Persistence

of Vision raytracer (POV-Ray) (a) and our algorithm (b). The differes

in the refraction and shadow size as well as the slightly displaced caustic
pattern are due to smoothing of the refractive index field. 58

(a) Glass block with embedded SIGGRAPH logo made up of varying re-
fraction and attenuation materials, 14.7 FPS, (5 objects in scene). Note

the surface reflections and the total reflections within, as well as the
rounded cube being visible through the glass block. (b) Complex re-
fraction patterns in the glass, 10.3 FPS, (5 objectsinscene). 60

(a) Rounded cube composed of three differently colored andetitigr
refracting kinds of glass, showing scattering effects and caustics in its
interior, 6.5 FPS. (b) Stanford bunny [sta] with spatially varying atten-
uation, leading to the impression of an amber-like bunny with black
embeddings. Since the object is illuminated from underneath, colored
volume caustics and shadows are visible in the anisotropically scatter-
ing smoke and glass, 13 FPS. — Note that there are 5 objects rendered
simultaneously. 60

(a) Colored sphere rendered into an HDR environment map, showing
slight emission in addition to all other effects, at 26.2 FPS. (c) A screen-
shot of a wine glass scene. The time to compute the light distribution

was around 7 seconds. The time required to render the object is around
0.04seconds/25FPS. 61

List of Figures

7.5

Al
A2

A3

(a) Scene showing up to 9 objects simultaneously. The big sphere in
the middle has a resolution ®283 voxels, while the small spheres sur-
rounding it are composed of ond2? voxels. The rendering speed in this
scene varies between 9 FPS (when the big sphere fills out the complete
viewport) and 60 FPS (whenever only the small spheres are visible).
Frame rate of the screenshot is 15.2 FPS. (b) A screenshot from the mu-
seum scene, showing all refractive objects simultaneously . The objects
exhibit various optical effects. Their resolutionlig8® voxels, with up

to 6 volume data textures for each object. The rendering speed is 10.8
FPS. . e 61

A birefringence crystal (calcite) showing the double refraction ofitiie. 66
Formation of an ordinary and extraordinary ray when an incident ray
encounters an anisotropic medium [GS04]. 67
The electric field of am-ray is not perpendicular to the wave propagation
direction. The consequence is that the energy propagation and wave
propagation vectors are not parallel, i¢.}f s,. (Note that this figure

has no directly verifiable physical significance.) 68

84

BIBLIOGRAPHY

[Arv86]

[BD02]

[Bli82]

[BMOS]

[BW99]

[CHHO2]

[DBBO6]

[EAMJO5]

[GS04]

James R. Arvo. Backward Ray Tracing. ACM SIGGRAPH '86 Course
Notes - Developments in Ray Tracimplume 12, 1986.

David Benson and Joel Davis. Octree texturesSIBGRAPH '02: Pro-
ceedings of the 29th annual conference on Computer graphics andénter
tive techniquespages 785—-790, New York, NY, USA, 2002. ACM Press.

James F. Blinn. Light reflection functions for simulation of clouds dodty
surfaces. IISIGGRAPH '82: Proceedings of the 9th annual conference on
Computer graphics and interactive techniguesges 21-29, New York,
NY, USA, 1982. ACM Press.

G. Beyerle and I. S. McDermid. Ray-tracing formulas for refian and
internal reflection in uniaxial crystalgpplied Optics37:7947—-7953, 1998.

Max Born and Emil Wolf.Principles of Optics, seventh editio@ambridge
University Press, 1999.

Nathan A. Carr, Jesse D. Hall, and John C. Hart. The rainengn HWWS
'02: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conferemce o
Graphics hardwarepages 37-46, Aire-la-Ville, Switzerland, Switzerland,
2002. Eurographics Association.

Phil Dutre, Kavita Bala, and Philippe BekaeAdvanced Global lllumina-
tion, 2nd Edition A K Peters, Natick, MA, 2006.

Manfred Ernst, Tomas Akenine-®er, and Henrik Wann Jensen. Interac-
tive rendering of caustics using interpolated warped volumesGIID5:
Proceedings of Graphics Interface 2Q@fages 87-96, School of Computer
Science, University of Waterloo, Waterloo, Ontario, Canada, 2006aCa
dian Human-Computer Communications Society.

Stephane Guy and Cyril Soler. Graphics gems revisited: fdgitaysically-
based rendering of gemstonésCM Trans. Graph.23(3):231-238, 2004.

85

Bibliography

[GWS04]

[HBSLO3]

[HJ41]

[HQO7]

[HS01]

[1IZT+07]

[Jen96]

[Jen01]

[KMSO05]

[KvH84]

[MH92]

J. @Ginther, 1. Wald, and P. Slusallek. Realtime caustics using distributed
photon mapping. IrRendering Techniquepages 111-121, June 2004.
(Proceedings of the 15th Eurographics Symposium on Rendering).

M.J. Harris, W.V. Baxter, T. Scheuermann, and A. Lastramufation of
cloud dynamics on graphics hardware. Rmoc. of Graphics Hardware
pages 92-101, 2003.

L. Henyey and Greenstein J. Diffuse radiation in the galakgtrophys.
Journal 93:70-83, 1941.

Wei Hu and Kaihuai Qin. Interactive Approximate Rendering efl&c-
tions, Refractions, and CaustidEEE TVCG 13(1):46-57, 2007.

Z. S. Hakura and J. M. Snyder. Realistic reflections and atidirzs on
graphics hardware with hybrid rendering and layered environment.naps
Proceedings of the 12th Eurographics Workshop on Rendering itrers
pages 289-300, London, UK, 2001. Springer-Verlag.

I. Ihrke, G. Ziegler, A. Tevs, C. Theobalt, M. Magnor, and HSRidel.
Eikonal rendering: Efficient light transport in refractive object&CM
Trans. on Graphics (Siggraph’07), to appe#&ugust 2007.

Henrik Wann JenserGlobal lllumination Using Photon MapsSpringer-
Verlag, London, UK, 1996.

Henrik Wann JenseRealistic image synthesis using photon mappiAg
K. Peters, Ltd., Natick, MA, USA, 2001.

G. Krawczyk, K. Myszkowski, and H.-P. Seidel. Perceptefétcts in real-
time tone mapping. IProc. of Spring Conference on Computer Graphics
pages 195-202. ACM, 2005.

James T. Kajiya and Brian P. von Herzen. Ray tracing volumsaitles. In
SIGGRAPH '84: Proceedings of the 11th annual conference on Campu
graphics and interactive techniqugsages 165-174, New York, NY, USA,
1984. ACM Press.

Don Mitchell and Pat Hanrahan. lllumination from curved reflestoln
SIGGRAPH '92: Proceedings of the 19th annual conference on Campu
graphics and interactive techniqugzages 283—-291, New York, NY, USA,
1992. ACM Press.

86

Bibliography

[MMO02] Vincent C. H. Ma and Michael D. McCool. Low latency photon mayp
using block hashing. Technical report, Aire-la-Ville, Switzerland, Switze
land, 2002.

[MS] R. Merlino and L. Somantri. The wavy face of light: Darkness, sies
colors and fringes. http://www.physics.uiowa.edu/"umallik/adventure/phys-
optics/lightwave.html. [Online; accessed 30-May-2007].

[Ohb03] E. Ohbuchi. A real-time refraction renderer for volume objesiagia
polygon-rendering scheme. Rroc. of CG| pages 190-195, 2003.

[PBMHO02] Timothy J. Purcell, lan Buck, William R. Mark, and Pat HanmahaRay
tracing on programmable graphics hardwareSIGGRAPH '02: Proceed-
ings of the 29th annual conference on Computer graphics and interactive
techniquespages 703712, 2002.

[PDC"03] Timothy J. Purcell, Craig Donner, Mike Cammarano, Henrik Wann Jense
and Pat Hanrahan. Photon mapping on programmable graphics hardware
In SIGGRAPH/EUROGRAPHICS Workshop On Graphics Hardwzages
41-50, 2003.

[Pri63] P. Pringsheimiluorescence and phosphoresceridew York : Interscience
Publishers, second edition, 1963.

[PTVF92] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. PniRkery. Numeri-
cal Recipes in CCambridge University Press, 1992.

[Pur04] Timothy J. PurcellRay tracing on a stream processdPhD thesis, 2004.
Adviser-Patrick M. Hanrahan.

[SFD0O0O] Y. Sun, F.D. Fracchia, and M.S. Drew. Rendering diamomdBrdc. of the
11th WSCGpages 9-15, 2000.

[SHB99] Milan Sonka, Vaclav Hlavac, and Roger Boymage Processing, Analysis
and Machine VisionPWS Publishing, second edition, 1999.

[SKO7] Musawir A. Shah and Jaakko Konttinen. Caustics mapping: An image
space technique for real-time causticEEEE Transactions on Visualiza-
tion and Computer Graphi¢d.3(2):272—-280, 2007. Member-Sumanta Pat-
tanaik.

87

Bibliography

[SL96] Jos Stam and Eric Langnou. Ray tracing in non-constant media.Plio-
ceedings of the eurographics workshop on Rendering techniquegdgés
225-ff., London, UK, 1996. Springer-Verlag.

[sta] The Stanford 3D Scanning Repository.
http://graphics.stanford.edu/data/3Dscanrep. [Online; accessed 10-
January-2007].

[SWS02] ®&rg Schmittler, Ingo Wald, and Philipp Slusallek. Saarcor: a hardware
architecture for ray tracing. IRRWWS '02: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardwpages 27—
36, Aire-la-Ville, Switzerland, Switzerland, 2002. Eurographics Agsoc
tion.

[TTW94] David C. Tannenbaum, Peter Tannenbaum, and Michael JnyVdzolar-
ization and birefringency considerations in rendering SIGGRAPH '94:
Proceedings of the 21st annual conference on Computer graphitcister-
active techniquesgpages 221-222, New York, NY, USA, 1994. ACM Press.

[WBS*™02] I. Wald, C. Benthin, P. Slusallek, T. Kollig, and A. Keller. Interactijlebal
illumination using fast ray tracing. IRroc. of Eurographics Rendering
Workshoppages 1524, 2002.

[WD06] C.Wyman and S. Davis. Interactive image-space techniquespfmoxi-
mating caustics. IProceedings of ACM I3Ppages 153-160, 2006.

[WK90] Lawrence B. Wolff and David J. Kurlander. Ray tracing with paation
parameterslEEE Comput. Graph. Appl10(6):44-55, 1990.

[WSO03] M. Wand and W. Strasser. Real-time caustiCemputer Graphics Forum
(Proc. of Eurographics 2003pages 611-622, 2003.

[WTPO1] Alexander Wilkie, Robert F. Tobler, and Werner Purgathof@ombined
rendering of polarization and fluorescence effects.Ptaceedings of the
12th Eurographics Workshop on Rendering Technigyeges 197-204,
London, UK, 2001. Springer-Verlag.

[WymO5a] C. Wyman. An approximate image-space approach for inteeactivac-
tion. ACM Trans. Graph.24(3):1050-1053, 2005.

[WymO5b] C. Wyman. Interactive image-space refraction of nearbyngéy. InPro-
ceedings of GRAPHITpages 205-211, 2005.

88

Bibliography

[ZTTS06] G. Ziegler, A. Tevs, C. Theobalt, and H.-P. Seidel. On-thedint clouds
through histogram pyramids. Froc. of VMV, pages 137-144, 2006.

89

